Answer:
Explanation:
T = 2π√(L/g)
If you increase L to 2L, the period is increased by a factor of √2
T = 3.5√2 ≈ 4.9 s
Most ultrasound technicians train in an associates degree, but can also get a bachelors degree in the field. There is also certification programs you can go through. Hope this helped!!! :)
Answer:
a) 6.95 m/s
b) 1.42 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²

a) The vertical speed when it leaves the ground. is 6.95 m/s

Time taken to reach the maximum height is 0.71 seconds

Time taken to reach the ground from the maximum height is 0.71 seconds
b) Time it stayed in the air is 0.71+0.71 = 1.42 seconds
Answer:
18.6012339739 A
Explanation:
= Vacuum permeability = 
L = Length of wire = 55 cm
N = Number of turns = 4000
I = Current
Magnetic field is given by

The current necessary to produce this field is 18.6012339739 A
Answer:
A u = 0.36c B u = 0.961c
Explanation:
In special relativity the transformation of velocities is carried out using the Lorentz equations, if the movement in the x direction remains
u ’= (u-v) / (1- uv / c²)
Where u’ is the speed with respect to the mobile system, in this case the initial nucleus of uranium, u the speed with respect to the fixed system (the observer in the laboratory) and v the speed of the mobile system with respect to the laboratory
The data give is u ’= 0.43c and the initial core velocity v = 0.94c
Let's clear the speed with respect to the observer (u)
u’ (1- u v / c²) = u -v
u + u ’uv / c² = v - u’
u (1 + u ’v / c²) = v - u’
u = (v-u ’) / (1+ u’ v / c²)
Let's calculate
u = (0.94 c - 0.43c) / (1+ 0.43c 0.94 c / c²)
u = 0.51c / (1 + 0.4042)
u = 0.36c
We repeat the calculation for the other piece
In this case u ’= - 0.35c
We calculate
u = (0.94c + 0.35c) / (1 - 0.35c 0.94c / c²)
u = 1.29c / (1- 0.329)
u = 0.961c