Answer:
y = 80.2 mille
Explanation:
The minimum size of an object that can be seen is determined by the diffraction phenomenon, if we use the Rayleigh criterion that establishes that two objects can be distinguished without the maximum diffraction of a body coincides with the minimum of the other body, therefore so much for the pupil of the eye that it is a circular opening
θ = 1.22 λ/ d
in a normal eye the diameter of the pupils of d = 2 mm = 0.002 m, suppose the wavelength of maximum sensitivity of the eye λ = 550 nm = 550 10⁻⁹ m
θ = 1.22 550 10⁻⁹ / 0.002
θ = 3.355 10⁻⁴ rad
Let's use trigonometry to find the distance supported by this angle, the distance from the moon to the Earth is L = 238900 mille = 2.38900 10⁵ mi
tan θ = y / L
y = L tan θ
y = 2,389 10⁵ tan 3,355 10⁻⁴
y = 8.02 10¹ mi
y = 80.2 mille
This is the smallest size of an object seen directly by the eye
Explanation:
A wavefront is the long edge that moves, for example, the crest or the trough. Each point on the wavefront emits a semicircular wave that moves at the propagation speed v. These are drawn at a time t later, so that they have moved a distance s = vt.
Answer:
86605.08 N
Explanation:
The equation to calculate the force is:
Force = mass * acceleration
The force and the acceleration does not have the same direction in this case, so we need to decompose the force into its horizontal component, which is the force that will generate the horizontal acceleration:
Force_x = Force * cos(30)
Then, we have that:
Force_x = mass * acceleration
Force * cos(30) = 25000 * 3
Force * 0.866 = 75000
Force = 75000 / 0.866 = 86605.08 N