The block moves with constant velocity: for Newton's second law, this means that the resultant of the forces acting on the block is zero, because the acceleration is zero.
We are only concerned about the horizontal direction, and there are only two forces acting along this direction: the force F pushing the block and the frictional force

acting against the motion. Since their resultant must be zero, we have:

The frictional force is

where

is the coefficient of kinetic friction

is the weight of the block.
Substituting these values, we find the magnitude of the force F:
Answer:
c=0.14J/gC
Explanation:
A.
2) The specific heat will be the same because it is a property of the substance and does not depend on the medium.
B.
We can use the expression for heat transmission

In this case the heat given by the metal (which is at a higher temperature) is equal to that gained by the water, that is to say

for water we have to
c = 4.18J / g ° C
replacing we have

I hope this is useful for you
A.
2) El calor específico será igual porque es una propiedad de la sustancia y no depende del medio.
B.
Podemos usar la expresión para la transmisión de calor

En este caso el calor cedido por el metal (que está a mayor temperatura) es igual al ganado por el agua, es decir

para el agua tenemos que
c=4.18J/g°C
reemplazando tenemos

<u>Answer:</u>
Force = 20N
acceleration (a) = 1.5 m/s²
Mass of object (m) = ?
<u>From Newtons II law</u>
<em> F = m. a N</em>
m = F/a
m = 20/1.5
<em> m = 13.34 Kg</em>
<em>Mass of an object is 13.34 Kg</em>
The other of the four organic molecules is carbohydrates.
All four of them are:
Nucleic Acids (DNA and RNA stuff)
Proteins
Lipids
& Carbohydrates
The medium determines the speed of the wave traveling in it, which also can have a number of other effects, including how much the wave bends (refracts), whether it reflects, etc.
Because waves move through space, they must have a velocity. The velocity of a wave is a function of the type of wave, and the medium it travels through. Electromagnetic waves moving through a vacuum, for instance, travel at roughly 3 x
10
8
m/s. This value is so famous and common in physics it is given its own symbol, c.