A wheel and axle and an inclined plane.
The amount of heat needed to increase the temperature of a substance by

is given by

where
m is the mass of the substance

is its specific heat capacity

is the increase of temperature
The sample of silver of our problem has a mass of

. Its specific heat capacity is

and the increase in temperature is

Therefore, the amount of heat needed is
The difference between the parts of the plot with positive slope and the parts with negative slope can be found below.
<h3>What is a slope?</h3>
A slope in a graph is the ratio of the vertical and horizontal distances between two points on a line. Slope shows both steepness and direction of values.
A slope can either be positive or negative depending on the relationship between the variables being plotted.
A positive slope means that the variable are directly related while the negative slope means that two variables are negatively related.
A positive slope further means that the line moves upward when going from left to right on the graph while with the negative slope, the line moves down when going from left to right.
Learn more about slope at: brainly.com/question/2491620
#SPJ1
Answer:
The individual positive plate capacity is 85 Ah.
(D) is correct option.
Explanation:
Given that,
Number of plates = 15
Capacity = 595 Ah
We need to calculate the individual positive plate capacity in motive power cell
We have,
15 plates means 7 will make pair of positive and negative.
So, there are 7 positive cells individually.
The capacity will be

Put the value into the formula


Hence, The individual positive plate capacity is 85 Ah.
Answer:
F=(-4.8*10^22,0,0) N
Explanation:
<u>Given :</u>
We are given the magnitude of the momentum of the planet and let us call this momentum (p_now) and it is given by p_now = 2.60 × 10^29 kg·m/s. Also, we are given the force exerted on the planet F = 8.5 × 10^22 N. and the angle between the planet and the star is Ф = 138°
Solution :
We are asked to find the parallel component of the force F The momentum here is not constant, where the planet moving along a curving path with varying speed where the rate change in momentum and the force may be varying in magnitude and direction. We divide the force here into two parts: a parallel force F to the momentum and a perpendicular force F' to the momentum.
The parallel force exerted to the momentum will speed or reduce the velocity of the planet and does not change its moving line. Let us apply the direction cosines, we could obtain the parallel force as next
F=|F|cosФp (1)
Where the parallel force F is in the opposite direction of p as the angle between them is larger than 90°. Now we can plug our values for 0 and I F I into equation (1) to get the parallel force to the planet
F=|F|cosФp
=-4.8*10^22 N*p
<em>As this force is in one direction, we could get its vector as next </em>
F=(-4.8*10^22,0,0) N
F=(0,-4.8*10^22,0) N
F=(0,0-4.8*10^22) N
The cosine of 138°, the angle between F and p is, is a negative number, so F is opposite to p. The magnitude of the planet's momentum will decrease.