Work is defined as a Newton * meter.
Answer:
Explanation:
Given
Length of rope 
Weight of rope 
weight density
Work done to lift rope 33 m


![W=73.45\left [ \left ( \frac{h^2}{2}\right )\right ]^{33}_0](https://tex.z-dn.net/?f=W%3D73.45%5Cleft%20%5B%20%5Cleft%20%28%20%5Cfrac%7Bh%5E2%7D%7B2%7D%5Cright%20%29%5Cright%20%5D%5E%7B33%7D_0)
Answer:
Explanation:
F = ma. For us, this looks like
60 = 30a and
a = 2 m/s/s
If the force goes up to, say, 90, then
90 = 30a and
a = 3...if the force goes up, the acceleration also goes up.
If the mass goes up to say, 60, and the force stays the same, then
60 = 60a and
a = 1...if the mass goes up, the acceleration goes down.
Answer:
205 V
V
= 2.05 V
Explanation:
L = Inductance in Henries, (H) = 0.500 H
resistor is of 93 Ω so R = 93 Ω
The voltage across the inductor is

w = 500 rad/s
IwL = 11.0 V
Current:
I = 11.0 V / wL
= 11.0 V / 500 rad/s (0.500 H)
= 11.0 / 250
I = 0.044 A
Now
V
= IR
= (0.044 A) (93 Ω)
V
= 4.092 V
Deriving formula for voltage across the resistor
The derivative of sin is cos
V
= V
cos (wt)
Putting V
= 4.092 V and w = 500 rad/s
V
= V
cos (wt)
= (4.092 V) (cos(500 rad/s )t)
So the voltage across the resistor at 2.09 x 10-3 s is which means
t = 2.09 x 10⁻³
V
= (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))
= (4.092 V) (cos (500 rads/s)(0.00209))
= (4.092 V) (cos(1.045))
= (4.092 V)(0.501902)
= 2.053783
V
= 2.05 V
Answer:
No, the car is decelerating
Explanation:
No the car is decelerating if it exits a freeway and goes from 65
mph to 35 mph since the change in velocity is negative.
change in velocity = final - initial
change in velocity = 35 - 65
change in velocity = -30mph
Since the change in velocity is negative, hence the car is decelerating. Deceleration is a negative acceleration