Subtract 24 from both sides (-45t=-8) then divide both sides by -45 (t=0.177)
Ok, I'm going to start off saying there is probably an easier way of doing this that's right in front of my face, but I can't see it so I'm going to use Heron's formula, which is A=√[s(s-a)(s-b)(s-c)] where A is the area, s is the semiperimeter (half of the perimeter), and a, b, and c are the side lengths.
Substitute the known values into the formula:
x√10=√{[(x+x+1+2x-1)/2][({x+x+1+2x-1}/2)-x][({x+x+1+2x-1}/2)-(x+1)][({x+x+1+2x-1}/2)-(2x-1)]}
Simplify:
<span>x√10=√{[4x/2][(4x/2)-x][(4x/2)-(x+1)][(4x/2)-(2x-1)]}</span>
<span>x√10=√[2x(2x-x)(2x-x-1)(2x-2x+1)]</span>
<span>x√10=√[2x(x)(x-1)(1)]</span>
<span>x√10=√[2x²(x-1)]</span>
<span>x√10=√(2x³-2x²)</span>
<span>10x²=2x³-2x²</span>
<span>2x³-12x²=0</span>
<span>2x²(x-6)=0</span>
<span>2x²=0 or x-6=0</span>
<span>x=0 or x=6</span>
<span>Therefore, x=6 (you can't have a length of 0).</span>
Answer:
<em>" Expected Payoff " ⇒ $ 1.56 ; Type in 1.56</em>
Step-by-step explanation:
Consider the steps below;

<em>Solution; " Expected Payoff " ⇒ $ 1.56</em>
Sets of three integers that could be right triangles are called pythagorean triples. the only pythagorean triple including 7 is 7, 24, and 25. so the length of the other leg is 24 and the length of the hypotenuse is 25. hope this helped!