4 In the open chain, 5 in the cyclic. Just like glucose.
Membranes are barriers and “gatekeepers”, they only let certain molecules pass through them.
they also transport nutrients to the cell
Answer:
317 g
Explanation:
Cu + 2HCl --> CuCl2 +H2
1 : 2 1 : 1
1 mole of Cu = 63.5 g
1 mole of H2 = 2g
1 mole Cu produces = 1 mole of H2
63.5 g of Cu produces = 2 g of H2
So
10 g of H2 will be produced from = (63.5/2)*10 = 317 g of Copper
If you are provided with Cation and an Anion with different oxidation states, then there ratio in the formula unit is adjusted as such that the oxidation number of one ion is set the coefficient of other ion and vice versa,
Example:
Let suppose you are provided with A⁺² and B⁻¹, so multiply A by 1 and B by 2 as follow,
A(B)₂
In statement we are given with Co⁺³ and SO₄⁻², so multiply Co⁺³ by 2 and SO₄⁻² by 3, hence,
Co₂(SO₄)₃
Result:
Co₂(SO₄)₃ is the correct answer.
The mass of NiCl₂•6HO₂ needed to prepare a 0.035 M 500 mL solution of NiCl₂•6HO₂ is 4.165 g
<h3>What is molarity? </h3>
This is defined as the mole of solute per unit litre of solution. Mathematically, it can be expressed as:
Molarity = mole / Volume
<h3>How to determine the mole of NiCl₂•6HO₂</h3>
- Molarity = 0.035 M
- Volume = 500 mL = 500 / 1000 = 0.5 L
Mole = Molarity × Volume
Mole of NiCl₂•6HO₂ = 0.035 × 0.5
Mole of NiCl₂•6HO₂ = 0.0175 mole
<h3>How to determine the mass of NiCl₂•6HO₂</h3>
- Mole of NiCl₂•6HO₂ = 0.0175 mole
- Molar mass of NiCl₂•6HO₂ = 238 g/mol
Mass = mole × molar mass
Mass of NiCl₂•6HO₂ = 0.0175 × 238
Mass of NiCl₂•6HO₂ = 4.165 g
Thus, 4.165 g of NiCl₂•6HO₂ is needed to prepare the solution
Learn more about molarity:
brainly.com/question/15370276