To know the answer, compare the oxidation number of the element in the reactant and the product side. The oxidation number of Al was originally +3, then became 0 after the reaction. On the other hand, Fe was originally 0, then became +2 after the reaction. When the element is oxidized, it oxidation number increases. <em>Thus, the element oxidized is Fe.</em>
When an electron moves from a higher energy shell to a lower one, energy in the form of light, more specifically a wavelength of a photon is released.
Answer: 7.07 grams
Explanation:
To calculate the moles :


According to stoichiometry :
1 mole of
require 1 mole of 
Thus 0.052 moles of
will require=
of 
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
As 1 mole of
give = 1 mole of 
Thus 0.052 moles of
give =
of 
Mass of 
Thus 7.07 g of
will be produced from the given masses of both reactants.
Answer : The energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Explanation :
First we have to calculate the moles of n-butane.

Given:
Molar mass of n-butane = 58.12 g/mole
Mass of n-butane = 58.3 g
Now put all the given values in the above expression, we get:

Now we have to calculate the energy required.

where,
Q = energy required
= enthalpy of fusion of solid n-butane = 4.66 kJ/mol
n = moles = 1.00 mol
Now put all the given values in the above expression, we get:

Thus, the energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Thermal energy is THE MEASURE OF TEMPERATURE IN A SYSTEM.
Thermal energy refers to the internal energy that is present in a system as a result of its temperature. The motion of the particles of an object depends on the temperature of the object and the higher the temperature, the faster the movement of the particles. The reverse is also true.