PS = PR + RS = 4x - 2 + 3x - 5 = 7x - 7.
2 would most like be doubled and be 4 I think...
I'm only going to alter the left hand side. The right side will stay the same the entire time
I'll use the identity tan(x) = sin(x)/cos(x) and cot(x) = cos(x)/sin(x)
I'll also use sin(x+y) = sin(x)cos(y)+cos(x)sin(y) and cos(x+y) = cos(x)cos(y)-sin(x)sin(y)
So with that in mind, this is how the steps would look:
tan(x+pi/2) = -cot x
sin(x+pi/2)/cos(x+pi/2) = -cot x
(sin(x)cos(pi/2)+cos(x)sin(pi/2))/(cos(x)cos(pi/2)-sin(x)sin(pi/2)) = -cot x
(sin(x)*0+cos(x)*1)/(cos(x)*0-sin(x)*1) = -cot x
(0+cos(x))/(-sin(x)-0) = -cot x
(cos(x))/(-sin(x)) = -cot x
-cot x = -cot x
Identity is confirmed
7/3x+1/3x=3x+6/3+5/3x
8/3x-5/3x=3x+6/3
3/3x=3x+6/3
x=3x+6/3
x-3x=6/3
-2x=2
-x=2/2
-x=1
x=-1