Answer:
sure i do! pls provide answer choices.
You have two triangles, ADC and ABC.
Sides AD and AB are congruent.
Sides DC and BC are congruent.
Side AC is congruent to itself.
By SSS, triangles ADC and ABC are congruent.
Corresponding parts of congruent triangles are congruent.
That means that angles DAC and BAC are congruent.
Angles DCA and BCA are congruent.
Since m<DAC = 32, then m<BAC = 32
Since m<DCA = 41, then m<BCA = 41.
Now you know the measures of two angles of triangle ABC.
The measures of the interior angles of a triangle add to 180.
You can find the measure of angle B.
m<BAC + m<B + m<BCA = 180
32 + m<B + 41 = 180
m<B + 73 = 180
m<B = 107
<h3>AG = 27 and VA = 24. What is TO? </h3>
A. 45
B. 43
<h3>C. 36</h3>
D. 90
#CarryOnLearning.
Answer:
Triangle APB is an isosceles triangle ⇒ 3rd answer
Step-by-step explanation:
* Lets explain the how to solve the problem
- ABCD is a square
∴ AB = BC = CD = AD
∴ m∠A = m∠∠B = m∠C = m∠D = 90°
- DPC is equilateral triangle
∴ DP = PC = DC
∴ m∠DPC = m∠PCD = m∠CDP = 60°
- In the Δs APD , BPC
∵ AD = BC ⇒ sides of the square
∵ PD = PC ⇒ sides of equilateral triangle
∵ m∠ADB = m∠BCP = 30° (90° - 60° = 30) ⇒ including angles
∴ Δs APD , BPC are congregant ⇒ SAS
- From congruent
∴ AP = BP
∴ Triangle APB is an isosceles triangle