Reacting 1-chloro-2-ethylcyclohexene with hydrogen gas using a platinum catalyst would give a product of 1-chloro-2-ethylcyclohexane.
Hydrogen gas is a reducing agent, which in this reaction, simply mean that the alkene double bond in the cyclohexene will disappear because one of the two bonds forming the double bond (in the alkene) will be connected to a hydrogen atom. The platinum catalyst is necessary to allow the reaction to proceed at a much lower (activation) energy than would have been required.
Answer:
C. some substances can move freely across the cell membrane, while others must be transported.
Explanation:
Answer:
increases the frequency of particle collisions
Explanation:
One factor upon which the rate of reaction depends is the surface area of reactants.
According to the collision theory, reactions occur when reactant particles having the required (activation) energy collide with each other, this collision is inelastic. However, collision of particles having energies less than the activation energy results in elastic collisions and no chemical reaction.
The more the exposed surface area of reactants, the greater the number of particles that come into contact with each other and the more the chances of frequent effective collisions that lead to reaction.
Thus, powdered zinc reacts faster with hydrochloric acid than zinc strips
Answer:
7.08
Explanation:
To solve this problem we'll use the <em>Henderson-Hasselbach equation</em>:
- pH = pka + log
![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Where
is the ratio of [sodium formate]/[formic acid] and pka is equal to -log(Ka), meaning that:
- pka = -log (1.8x10⁻⁴) = 3.74
We<u> input the data</u>:
- 4.59 = 3.74 + log
![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
And<u> solve for </u>
:
- 0.85 = log
![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
=![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
= 7.08
Answer: d. smaller.
Explanation:
Hybridization :
![N=\frac{1}{2}[V+N+A-C]](https://tex.z-dn.net/?f=N%3D%5Cfrac%7B1%7D%7B2%7D%5BV%2BN%2BA-C%5D)
N = number of electrons
where, V = number of valence electrons present in central atom i.e. oxygen = 6
N = number of monovalent atoms bonded to central atom=32
C = charge of cation = 0
A = charge of anion = 0
The number of electrons is 4 that means the hybridization will be
and the electronic geometry of the molecule will be tetrahedral. The bond angle for tetrahedral geometry is 
But as there are two atoms around the central oxygen, the third and fourth position will be occupied by lone pair of electrons. The repulsion between lone and bond pair of electrons is more and hence the molecular geometry will be bent and the bond angle will be smaller than expected and is 