The answer would be 5.5g because you have to subtract 8.2 minus 2.7 and you get 5.5g so basically the answer is C.
Answer:
Phosphorous has the smallest atomic size.
Explanation:
As we know these elements belong to same period means there valence shell is the same. So moving from left to right along the period the shell number remains constant but the number of protons and electrons increases. So, due to increase in number of protons the nuclear charge increases hence attracts the valence electrons more effectively resulting in the decrease of atomic size.
Elements and their atomic radius are as follow,
<span><span>Magnesium 0.160 nm
</span><span>
Aluminium 0.130 nm
</span><span>
Silicon 0.118 nm
</span><span>
Phosphorus <span>0.110 nm</span></span></span>
Answer:
A collapse of the population is rotting, food is not enough and livelihoods have become unfeasible to decrease the number of individuals again.
Another way is to generate mutations to generate a species more vulnerable to decreasing numbers.
In this way the overpopulation is controlled.
Explanation:
In ecosystems, if an increased population breaks the balance of this and begins a new constant adaptation of the extinction of some and overpopulation of others, which may be some chains break or remain unstable.
1) number of moles of N2 = n/2
2) Number of moles of CH4 = n/2
3) Total number of moles of the mixture = n/2 + n/2 = n
4) Kg of N2
mass in grams = number of moles * molar mass
molar mass of N2 = 2 * 14.0 g/mol = 28 g/mol
=> mass of N2 in grams = (n/2) * 28 = 14n
mass of N2 in Kg = mass of N2 in grams * [1 kg / 1000g] = 14n/1000 kg = 0.014n kg
Answer: mass of N2 in kg = 0.014n kg
They both have two electron shells. Period indicates number of shells.