Answer:
Explanation:
Pair 2.50g of O₂ and 2.50g of N₂
The atoms sample with the largest number of moles since the masses are the same would be the one with lowest molar mass according the the equation below:
Number of moles = 
Atomic mass of O = 16g and N = 14g
Molar mass of O₂ = 16 x 2 = 32gmol⁻¹
Molar mass of N₂ = 14 x 2 = 28gmol⁻¹
Number of moles of O₂ =
= 0.078mole
Number of moles of N₂ =
= 0.089mole
We see that N₂ has the largest number of moles
I
don't know because this is the question which I never heard
Answer:
0.3267 M
Explanation:
To solve this problem, first we calculate how many moles of Mn(ClO₄)₂ are contained in 23.640 g of Mn(ClO₄)₂·6H₂O.
Keep in mind that the crystals of Mn(ClO₄)₂ are hydrated, and <em>we need to consider those six water molecules when calculating the molar mass of the crystals</em>.
Molar mass of Mn(ClO₄)₂·6H₂O = 54.94 + (35.45+16*4)*2 + 6*18 = 361.84 g/mol
Now we <u>proceed to calculate</u>:
- 23.640 g Mn(ClO₄)₂·6H₂O ÷ 361.84 g/mol = 0.0653 mol Mn(ClO₄)₂·6H₂O = mol Mn(ClO₄)₂
Now we divide the moles by the volume, to <u>calculate molarity</u>:
- 200 mL⇒ 200/1000 = 0.200 L
- 0.0653 mol Mn(ClO₄)₂ / 0.200 L = 0.3267 M
Answer:
If you mix equal amounts of a strong acid and a strong base, the two chemicals essentially cancel each other out and produce a salt and water. Mixing equal amounts of a strong acid with a strong base also produces a neutral pH (pH = 7) solution.
Lipids are hydrophobic; They would be insoluble, group together, and float to the top