Answer:

Explanation:
Hello,
In this case, since a change in science is widely known to be considered as a subtraction between the the final and initial values of two measured variables and is represented via Δ, here the final density is 5.43 g/mL and the initial one was 3.21 g/mL, therefore, the change in density is:

Best regards.
Given reactions:
(A) 6CO2(g) + 6H2O(l) + sunlight → C6H12O6(aq) + 6O2(g)
(B) 2H2(g) + O2(g) → 2H2O(g) + energy
Exothermic reactions are those which proceed with the release of heat/energy. In contrast, endothermic reactions proceed with the absorption of energy in the form of heat or light.
Since reaction A required sunlight, it is endothermic. Reaction B releases energy, hence exothermic
Ans: (B)
A is endothermic
B is exothermic
Plasma membrane is the answer
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm