Battery or electrochemical cell
Explanation:
A battery is a power source that directs electrons from oxidation - reduction reactions to flow through a device to give electrical power.
- A battery is an electrochemical cell.
- Electrochemical cells are devices in which chemical reactions produce an electric current that is, chemical energy is turned into electrical energy.
- The reactions here are spontaneous redox reactions, hence electrons flows on its own in an external circuit.
learn more:
Battery brainly.com/question/8892837
Atomic battery brainly.com/question/6457557
#learnwithBrainly
The correct answer of gibbs free energy is -232 KJ.
ΔG = -nFE° = -2*96485*1.20 = -232 (kJ)
The Gibbs free energy of a system at any point in time is defined as its enthalpy minus the product of its temperature times its entropy. Because it is defined in terms of thermodynamic properties that are state functions, the system's Gibbs free energy is a state function. It is commonly referred to as free energy because it is readily available at all times. If necessary, the reaction can steal this energy without having to pay or work for it. The reaction between sodium chloride and water is regarded as spontaneous, and it has a negative G. When solid NaCl is immersed in water, it begins to dissociate on its own without any external assistance.
Learn more about Gibbs free energy here :-
brainly.com/question/20358734
#SPJ4
Answer:
See Explanation
Explanation:
The Law of Conservation of Matter as applied to chemical reactions says that matter is neither created nor distroyed, only changed in form. This implies that the mass of substances going into a reaction process must equal the mass of products generated during the reaction process.
Empirically,
∑ mass reactants = ∑ mass products
One can test this idea after balancing a chemical equation by determining the sum of formula weights of reactants and products; then compare. If reaction was properly balanced, the total mass reactants = total mass of products.
Example:
Combustion of Methane => CH₄(g) + 2O₂(g) => CO₂(g) + 2H₂O(l)
Equation Weights => 16amu + 64amu <=> 44amu + 36amu
Mass Reactants = Mass Products => 80amu <=> 80amu.
__________________
*amu = atomic mass units => sum of atomic weights of elements
Answer:
The answer will be Ligand A with a dissociation constant (Kd) of
M
Explanation:
When the dissociation constant in the ligand is small (in order of nano) (
) it will be more tied. Due to a dissociation constant measures how much a ligand can be able to be separated from the protein so if the number is small it means that the ligand is highly binded to the protein.
On the other hand, the occupancy percentage of the ligand does not imply binding. Conversely, a High-affinity ligand binding with the proteins implies that a relatively low concentration of a ligand is adequate to occupy the maximum ligand-binding site.