Think of it this way,
Mix Iron and sulphur in a bowl. How do you separate them? Use a magnet right. Yes.
Now, mix the iron and sulphur together but know, heat them up. Let them cool for a while. After that, use a magnet to separate. You cant. This is because the compound (FeS) now has a different property from its original components.
Apply this theory onto salts.
Answer:
C. Lose three electrons to have a full outer shell
Explanation:
Al is in Group 13 of the Periodic Table, so it has three valence electrons.
It must either lose three electrons or gain five to achieve a stable octet.
It is easier to lose three electrons than it is to gain five, so Al loses three electrons.
D. is wrong, for the same reason.
A. is wrong. If Al lost three electrons, it would be breaking into a stable inner shell.
C. is wrong. Al is a metal, so it will lose electrons in a reaction.
Answer:
I think yes it can be. ( I'm not sure. Sorry )
Explanation:
A plant or animal product is eat other animals that can traded or transported to economic benefit.
<h3>Answer:</h3>
The lowest boiling point is of n-Butane because it only experiences London Dispersion Forces between molecules.
<h3>Explanation:</h3>
Lets take start with the melting point of both compounds.
n-Butane = - 140 °C
Trimethylamine = - 117 °C
Intermolecular Forces in n-Butane:
As we know n-Butane is made up of Carbon and Hydrogen atoms only bonded via single covalent bonds. The electronegativity difference between C and C atoms is zero while, that between C and H atoms is 0.35 which is less than 0.4. Hence, the bonds in n-Butane are purely non polar in nature. Therefore, only London Dispersion Forces are found in n-Butane which are considered as the weakest intermolecular interactions.
Intermolecular Forces in Trimethylamine:
Trimethylamine (a tertiary amine) is made up of Nitrogen, Carbon and Hydrogen atoms bonded via single covalent bonds. The electronegativity difference between N and C atoms is 0.49 which is greater than 0.4. Hence, the C-N bond is polar in nature. Therefore, Dipole-Dipole interactions will be formed along with London Dispersion Forces which are stronger than Dispersion Forces. Therefore, due to Dipole-Dipole interactions Trimethylamine will have greater melting point than n-Butane.