The time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Speed is simply defined as the distance travelled per unit time. Mathematically, it is expressed as:
<h3>Speed = distance / time </h3>
With the above formula, we can obtain the time taken for the light to travel from the camera to someone standing 7 m away. This can be obtained as follow:
Distance = 7 m
Speed of light = 3×10⁸ m/s
<h3>Time =?</h3>
Time = Distance / speed
Time = 7 / 3×10⁸
<h3>Time = 2.33×10¯⁸ s</h3>
Therefore, the time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Learn more: brainly.com/question/14988345
42.9°
Explanation:
Let's assume that the x-axis is aligned with the incline and the positive direction is up the incline. We can then apply Newton's 2nd law as follows:


Note that the net force is zero because the block is moving with a constant speed when the angle of the incline is set at
Solving for the angle, we get

or

![\;\;\;= \sin^{-1}\left[\dfrac{34\:\text{N}}{(5.1\:\text{kg})(9.8\:\text{m/s}^2)}\right]](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%3D%20%20%5Csin%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7B34%5C%3A%5Ctext%7BN%7D%7D%7B%285.1%5C%3A%5Ctext%7Bkg%7D%29%289.8%5C%3A%5Ctext%7Bm%2Fs%7D%5E2%29%7D%5Cright%5D)

Answer:
As an object’s temperature increases, the Rate at which it radiates energy increases.
It runs slower <span>as gravity is lower so acceleration due to gravity is smaller</span>
Density <em>ρ</em> is mass <em>m</em> per unit volume <em>v</em>, or
<em>ρ</em> = <em>m</em> / <em>v</em>
Solving for <em>v</em> gives
<em>v</em> = <em>m</em> / <em>ρ</em>
So the given object has a volume of
<em>v</em> = (130 g) / (65 g/cm³) = 2 cm³