Answer:
a. 2.645 * 10^7 m/s^2
b. 2.645 * 10^4 N
Explanation:
Parameters given:
Velocity of rod = 2010m/s
Length of rod = 15.3cm = 0.153m
Mass of object placed at the end of the rod = 1g = 0.001kg
a. Centripetal acceleration is given as:
a = (v*v)/r
Where v = velocity
r = radius of curvature.
The radius of curvature in this case is equal to the length of the rod, since the rod makes the circular path of the motion.
Hence, centripetal acceleration at the end of the rod:
a = (2010*2010)/(0.153)
a = 26432156.86 m/s^2 = 2.64 * 10^7 m/s
b. The force needed to hold the object at the end of the rod is equal to the centripetal force at the end of the rod. Centripetal force is given as:
F = ma = (m*v*v)/r
Where a = centripetal acceleration
F = 0.001 * 2.64 * 10^7
F = 2.64 * 10^4N
<span>Given:
Hmax (distance) = 50.0m
v</span>₀ = <span>70.0m/s
Required:
what angle should the arrow make with the horizontal as it is being shot
Solution:
Hmax = v</span>₀²sin²θ / 2g
sin²θ = 2gHmax / v₀²
sin²θ = 2 (9.81 m/s²) (50m) / (70 m/s)²
sin²θ = 0.200
θ = 26.56°
During cellular respiration, organisms use oxygen to turn glucose into carbon dioxide, water, and energy in the form of ATP. The process has three stages: glycolysis , the Krebs cycle, and the electron transport chain. Glycolysis in the cytoplasm ), breaks down 1 glucose into 2 pyruvate and 2 ATP. The Krebs cycle (in the mitochondrion's matrix), provides the hydrogen and electrons needed for the electron transport chain. Another 2 are formed here. The electron transport chain (on the inner mitochondrial membrane) forms 32 ATP through oxidative phosphorylation .
Answer:
The Earth holds livings things and even the layer has more complex layers in it (Also it's not white) And of course there are no oceans.
Answer:
Number of Wire Turns in the Coil.
Explanation:
The greater the number of turns of wire in the coil, the greater the inductance. Fewer turns of wire in the coil results in lesser inductance. More coils of wires indicate a greater amount of magnetic field force for a given amount of coil current.