Answer:
217.43298 m/s
Explanation:
= Mass of bullet = 19 g
= Mass of bob = 1.3 kg
L = Length of pendulum = 2.3 m
= Angle of deflection = 60°
u = Velocity of bullet
Combined velocity of bullet and bob is given by

As the momentum is conserved

The speed of the bullet is 217.43298 m/s
Answer:3,600 Newtons
Explanation:
The net force acting on the car is
3×10^3squared
Newtons.
Force is defined as the product of the mass of the body and its aaceleration,⇒F=ma
Substituting the above given values we get,F=(1500kg) (2.0m /s^2 squared)=3000 N=3×10^3 squared N.
N=newtons
Answer:
3 km/h
Explanation:
Let's call the rowing speed in still water x, in km/h.
Rowing speed in upstream is: x - 2 km/h
Rowing speed in downstream is: x + 2 km/h
It took a crew 9 h 36 min ( = 9 3/5 = 48/5) to row 8 km upstream and back again. Therefore:
8/(x - 2) + 8/(x + 2) = 48/5 (notice that: time = distance/speed)
Multiplying by x² - 2², which is equivalent to (x-2)*(x+2)
8*(x+2) + 8*(x-2) = (48/5)*(x² - 4)
Dividing by 8
(x+2) + (x-2) = (6/5)*(x² - 4)
2*x = (6/5)*x² - 24/5
0 = (6/5)*x² - 2*x - 24/5
Using quadratic formula






A negative result has no sense, therefore the rowing speed in still water was 3 km/h
The discovery which Carnot made was that THE DIFFERENCE IN THE TEMPERATURES BETWEEN THE HOT AND THE COLD RESERVOIRS DETERMINE HOW WELL A HEAT ENGINE WOULD WORK.
Sadi Carnot was a French engineer, He proposed a theoretical thermodynamic cycle in 1824. In his cycle, Said hold that the efficiency of a heat engine depends on the temperature difference between its hot reservoir and cold reservoir.