Answer:
Cannot be determined from the given information
Explanation:
Given the following data;
Velocity = 24 m/s
Period = 3 seconds
To find the amplitude of the wave;
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.
A is the amplitude.
ω is the angular frequency measured in rad/s.
t is the time period measured in seconds.
ϕ is the phase angle.
Hence, the information provided in this exercise isn't sufficient to find the amplitude of the waveform.
However, the given parameters can be used to calculate the frequency and wavelength of the wave.
Answer:
W=315 x 10⁵ J
Explanation:
Given that
F= 2.5 x 10⁵ N
d= 90 m
K.E.=5.4 x 10⁷ J
We know that work done by all force is equal to the change in kinetic energy
Lets take work done by catapult is W
W + F.d= K.E.
W= 5.4 x 10⁷ - 2.5 x 10⁵ x 90 J
W= (540 - 25 x 9) 10⁵ J
W=315 x 10⁵ J
Answer:
7,14545 mph and 3,1936 m/s
Explanation:
The average speed is calculated by dividing the displacement over time, then it is 26,2 miles/(3 2/3 hours), here 3 (2/3) hours is a mixed number, that represents 11/3 hours or 3,66 hours. Then the average speed is 7,14545 mph, now to turn this into meters per second, we notice as mentioned that 1 mile =1609 meters and 1 hour=3600 seconds. Then 7,14545 miles/hour* (1 hour/3600 seconds) * (1609 meters/1 mile)=3,1936 m/s
Answer:
v' = 1.5 m/s
Explanation:
given,
mass of the bullet, m = 10 g
initial speed of the bullet, v = 300 m/s
final speed of the bullet after collision, v' = 300/2 = 150 m/s
Mass of the block, M = 1 Kg
initial speed of the block, u = 0 m/s
velocity of the block after collision, u' = ?
using conservation of momentum
m v + Mu = m v' + M u'
0.01 x 300 + 0 = 0.01 x 150 + 1 x v'
v' = 0.01 x 150
v' = 1.5 m/s
Speed of the block after collision is equal to v' = 1.5 m/s