1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Assoli18 [71]
3 years ago
7

A 16-cm-long straight line connects the center of a turntable to its edge. The turntable rotates counter-clockwise at 45 rpm. A

bug crawls along the line from the turntable’s center at 3.5 cm s relative to the turntable. Assume it is initially moving in the positive x direction. At the moment the bug gets to the edge, what are the x and y components of the velocity of the bug?
Physics
1 answer:
Bond [772]3 years ago
6 0

Answer:

\mathbf{V_x = 3.25 \ cm/s}

\mathbf{V_y = 1.29\ cm/s}

Explanation:

Given that:

The radius of the table r = 16 cm  = 0.16 m

The angular velocity = 45 rpm

= 45 \times \dfrac{1}{60}(2 \pi)

= 4.71 rad/s

However, the relative velocity of the bug with turntable is:

v = 3.5 cm/s = 0.035 m/s

Thus, the time taken to reach the bug to the end is:

t = \dfrac{r}{v}

t = \dfrac{0.16}{0.035}

t = 4.571s

So the angle made by the radius r  with the horizontal during the time the bug gets to the end is:

\theta = \omega t

\theta = 4.712 \times 4.571

\theta = 21.54^0

Now, the velocity components of the bug with respect to the table is:

V_x = Vcos \theta

V_x = 0.035 \times cos (21.54^0)

V_x = 0.0325 \ m/s

\text {V_x = 3.25 \ cm/s}\mathbf{V_x = 3.25 \ cm/s}

Also, for the vertical component of the velocity V_y

V_y = V sin \theta

V_y = 0.035 \times sin (21.54^0)

V_y = 0.0129\ m/s

\mathbf{V_y = 1.29\ cm/s}

You might be interested in
When have you experienced an increase in kinetic<br> energy within a system?
Mars2501 [29]

Answer:

If a man starts running on a boat with an acceleration a with respect to the boat, there is no external force that acts on the Boat+Man system

8 0
3 years ago
To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V
aleksley [76]

Answer:

The maximum energy stored in the combination is 0.0466Joules

Explanation:

The question is incomplete. Here is the complete question.

Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.

Energy stored in a capacitor is expressed as E = 1/2CtV² where

Ct is the total effective capacitance

V is the supply voltage

Since the capacitors are connected in series.

1/Ct = 1/C1+1/C2+1/C3

Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF

1/Ct = 1/11.7 + 1/21.0 + 1/28.8

1/Ct = 0.0855+0.0476+0.0347

1/Ct = 0.1678

Ct = 1/0.1678

Ct = 5.96μF

Ct = 5.96×10^-6F

Since V = 125V

E = 1/2(5.96×10^-6)(125)²

E = 0.0466Joules

8 0
3 years ago
Which of the following is a pair of vector quantities?
hammer [34]

Answer:

velocity and displacement answer

Explanation:

thanks me

6 0
3 years ago
Read 2 more answers
A hungry hawk was preying on a lizard who was running northwards to get away from the low-flying hawk. If the lizard can run 8m
Anastaziya [24]

Answer:

2m/s²

Explanation:

velocity = displacement (distance in a specified direction /time

8 0
3 years ago
An ideal parallel-plate capacitor consists of a set of two parallel plates of area Separated by a very small distance 푑. This ca
dolphi86 [110]

Answer:

doubled the initial value

Explanation:

Let the area of plates be A and the separation between them is d.

Let V be the potential difference of the battery.

The energy stored in the capacitor is given by

U = Q^2/2C   ...(1)

Now the battery is disconnected, it means the charge is constant.

the separation between the plates is doubled.

The capacitance of the parallel plate capacitor is inversely proportional to the distance between the plates.

C' = C/2

the new energy stored

U' = Q^2 /  2C'

U' = Q^2/C = 2 U

The energy stored in the capacitor is doubled the initial amount.

8 0
3 years ago
Other questions:
  • How long will the cylinder last at the given flow rate is the pressure is 1000 psi?
    9·1 answer
  • Which of the following types of light cannot be studied with telescopes on the ground?a. Visible light b. X-rays c. Radio waves
    6·1 answer
  • What can scientist learn from studying sedimentary rocks?
    5·2 answers
  • A stuntman with a mass of 80.5 kg swings across a moat from a rope that is 11.5 m. At the bottom of the swing the stuntman's spe
    12·1 answer
  • Holding onto a tow rope moving parallel to a frictionless ski slope, a 61.8 kg skier is pulled up the slope, which is at an angl
    7·1 answer
  • you can produce a sound by plucking a string or by blowing in a pipe. how are these two ways different?​
    11·1 answer
  • If we decrease the distance an object moves we will
    5·2 answers
  • Question 25
    13·1 answer
  • I will award brainliest...Please what is the work done by a man who is pulling a box of 45kg of mass by means of rope which make
    7·1 answer
  • A student switches the torch on and sees that it gives out a bright light.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!