Answer:
1) The matter absorbs or reflects the light
2) Lens
3) <u><em>Concave</em></u>- curves inwards. Diverges light
b.<u><em>Convex</em></u>- curves outward. Converges light
4) The image is real if the distance of the object from the lens is greater than the focal length and virtual if it is less than the focal length
5) Lens and, for convex lenses, on the distance between the lens and the object.
6) Index of refraction?
Explanation:
I hope this helped you, sorry if anything is wrong
Answer:
Immunization, or immunisation, is the process by which an individual's immune system becomes fortified against an infectious agent.
Explanation:
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPS</em><em> </em>
<em>HAVE</em><em> </em><em>A</em><em> </em><em>NICE</em><em> </em><em>DAY</em><em> </em><em>:)</em><em> </em>
<em>XXITZFLIRTYQUEENXX</em><em> </em>
That seems like a statement more than a question. Where's the question?
Answer:

Explanation:
Gauge pressure at the bottom of the cylinder depends on the height of water in the cylinder
So here we can say that

now when liquid is filled to height "h" in base area "A" then gauge pressure of the liquid at the bottom is given as

now we put the whole liquid into another cylinder with twice radius of the first cylinder
So area becomes 4 times
now by volume conservation we can say that if area is increased by 4 times then height of liquid will decrease by 4 times
so we have

so gauge pressure is given as

Question: The force between a pair of 0.005 C is 750 N. What is the distance between them?
Answer:
17.32 m
Explanation:
From coulomb's Law,
F = kqq'/r²........................... Equation 1
Where F = Force between the force, q' and q = both charges respectively, k = coulomb's constant, r = distance between both charges.
make r the subject of the equation above
r = √(kqq'/F)..................... Equation 2
From the question,
Given: q = q' = 0.005 C, F = 750 N
Constant: k = 9.0×10⁹ Nm²/C².
Substitute these values into equation 2
r = √(9.0×10⁹×0.005×0.005/750)
r = √(300)
r = 17.32 m.
Hence the distance between the pair of charges = 17.32 m