Answer:
The answer is 4200 J.
Explanation:
The formula of work done is, W = F×D where F is the force of an object and D is the distance. Then you just substitute the values into the equation :
W = F×D
F = 42N
D = 100m
W = 42 × 100
= 4200 J
We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.
For this case, the first thing you should do is define a reference system.
Once the system is defined, we must follow the following steps:
1) Do the sum of forces in a horizontal direction
2) Do the sum of forces in vertical direction
The forces will be balanced if for each direction the net force is equal to zero.
The forces will be unbalanced if for each direction the net force is nonzero.
Answer:
Add the forces in the horizontal and vertical directions separately.