Answer:
A. 7,348
Step-by-step explanation:
P = le^kt
intitial population = 500
time = 4 hrs
end population = 3,000
So we have all these variables and we need to solve for what the end population will be if we change the time to 6 hours. First, we need to find the rate of the growth(k) so we can plug it back in. The given formula shows a exponencial growth formula. (A = Pe^rt) A is end amount, P is start amount, e is a constant that you can probably find on your graphing calculator, r is the rate, and t is time.
A = Pe^rt
3,000 = 500e^r4
now we can solve for r
divide both sides by 500
6 = e^r4
now because the variable is in the exponent, we have to use a log

ln(6) = 4r
we can plug the log into a calculator to get
1.79 = 4r
divide both sides by 4
r = .448
now lets plug it back in
A = 500e^(.448)(6 hrs)
A = 7351.12
This is closest to answer A. 7,348
Answer:
Consider the parent logarithm function f(x) = log(x)
Now,
Let us make transformations in the function f(x) to get the function g(x)
•On streching the graph of f(x) = log(x) , vertically by a factor of 3, the graph of y = 3log(x) is obtained.
•Now, shrinking the graph of y = 3log(x) horizontally by a fctor of 2 to get the grpah of y = 3log(x/2) i.e the graph of g(x)
Hence, the function g(x) after the parent function f(x) = log(x) undergoes a vertical stretch by a factor of 3, and a horizontal shrink by a factor of 2 is
g(x) = 3 log(x/2) (Option-B).
Hi friend,
This is a perfect square trinomial.
It can be recognised because it is of the form:
a^2−2ab+b^2=(a−b)^2
with a=3x and b=4
9x2−24x+16=(3x)2−(2⋅(3x)⋅4)+42
=(3x−4)2
Answer:5m/2
Step-by-step explanation:
3m-m/2
(2×3m-1×m)/2
(6m-m)/2=5m/2