1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seraphim [82]
3 years ago
12

What is the average acceleration during the time interval 0 seconds to 10 seconds?

Physics
1 answer:
zhuklara [117]3 years ago
3 0

Answer:

A. 0.5 m/s^2

Explanation:

The average acceleration is equal to the ratio between the change in velocity and the time elapsed:

a=\frac{\Delta v}{\Delta t}

The change in velocity between t=0 s and t=10 s is the change on the vertical axis:

\Delta v = 5 -0 = 5 m/s

Whule the time interval is

\Delta t = 10 s

So the average acceleration is

a=\frac{5 m/s}{10 s}=0.5 m/s^2

You might be interested in
A uniform meter stick is hung at its center from a thin wire. It is twisted and oscillates with a period of 5 s. The meter stick
rewona [7]

Answer:

The new time period is  T_2 =  3.8 \  s

Explanation:

From the question we are told that

  The period of oscillation is  T =  5 \ s

   The  new  length is  l_2  =  0.76  \ m

Let assume the original length was l_1 = 1 m

Generally the time period is mathematically represented as

         T  =  2 \pi   \sqrt{ \frac{ I }{ mgh } }

Now  I is the moment of inertia of the stick which is mathematically represented as

           I  =  \frac{m * l^2 }{12 }

So

        T  =  2 \pi   \sqrt{ \frac{  m * l^2 }{12 *   mgh } }

Looking at the above equation we see that

        T  \ \ \  \alpha  \ \ \  l

=>    \frac{ T_2 }{T_1}  =  \frac{l_2}{l_1}

=>    \frac{ T_2}{5} =  \frac{0.76}{1}

=>     T_2 =  3.8 \  s

3 0
3 years ago
Velocity and acceleration are both vectors; they have a direction. What is thedirection of the velocity and acceleration vectors
just olya [345]

Answer:

d. Both A & C

Explanation:

- The velocity of the ball is a vector, whose magnitude indicates its rate of change of position, and it has a direction. In this case, the ball is moving upward, therefore the direction of motion is upward, so the direction of the velocity is upward as well.

- The acceleration of the ball is a vector, whose magnitude indicates the rate of change of the velocity. The direction of the acceleration is:

-- positive if the the magnitude of the velocity is increasing

-- negative if the magnitude of the velocity is decreasing

For a ball thrown upward, the acceleration is given by the acceleration of gravity, g=9.8 m/s^2. This acceleration points downward, and it is constant during the entire motion. In particular, it does not change direction, as it is always directed downward. Therefore, the acceleration of the ball is downward.

So, the correct answer is

d.Both A & C

Since A and C are both true:

a.The velocity vector is directed upward.

c.The acceleration is directed downward.

3 0
3 years ago
How much heat energy must be added to the gas to expand the cylinder length to 16.0 cm ?
Lapatulllka [165]

This question is incomplete, the complete question is;

A monatomic gas fills the left end of the cylinder in the following figure. At 300 K , the gas cylinder length is 14.0 cm and the spring is compressed by65.0 cm . How much heat energy must be added to the gas to expand the cylinder length to 16.0 cm ?

Answer:

the required heat energy is 16 J

Explanation:

Given the data in the question;

Lets consider the ideal gas equation;

PV = nRT

from the image, we calculate initial pressure;

Pi = ( 2000N/M × 0.06m) / 0.0008 m²

Pi = 15 × 10⁴ Pa

next we find Initial velocity

Vi = (0.0008 m²)(0.14) = 1.1 × 10⁻⁴ m²

now we find the number of moles

n = [(15 × 10⁴ Pa)(1.1 × 10⁻⁴ m²)] / 8.31 J/molK × 300K

N = 6.6 × 10⁻³ mol

next we calculate the final temperature;

Pf = ( 2000N/m × 0.08) / 0.0008 m²

Pf = 2 × 10⁵ Pa

Calculate the final Volume

Vf = (0.0008 m² × 0.16 m = 1.28 × 10⁻⁴ m³

we also determine the final temperature

T_{f} =  (2 × 10⁵ Pa × 1.28 × 10⁻⁴ m³) / 6.6 × 10⁻³ × 8.31 J/molK

T_{f}  = 466.8 K

so change in temperature ΔT

ΔT =  466.8 K - 300K = 166.8 K

we then calculate the change in thermal energy

ΔU = nCΔT

ΔU = ( 6.6 × 10⁻³ mol ) × 12.5 × 166.8K

ΔU = 13.761 J

C is the isochoric molar specific heat which is equal to 3R/2 for monoatomic

now we calculate the work done;

W = 1/2 × K( x_{i\\}² - x_{f\\}² )

W = 1/2 × ( 2000 N/m) ( 0.06² - 0.08² )

= - 2.8 J

and we then calculate the heat energy using the following expression;

Q = ΔU - W

we substitute

Q = 13.761 - (- 2.8 J)

Q = 13.761 + 2.8 J)

Q =  16 J

Therefore, the required heat energy is 16 J

5 0
2 years ago
Pls help me ill give brainliest
abruzzese [7]

Answer:

c

Explanation:

a, b, and d are examples of moving forward

while c is moving backwards.

4 0
3 years ago
Read 2 more answers
A projectile is fired into the air from the top of a 200-m cliff above a valley as shown below. Its initial velocity is 60 m/s a
anastassius [24]

a) y(max)  = 337.76 m

b) t₁ = 5.30 s  the time for y maximum

c)t₂ =  13.60 s  time for y = 0 time when the fly finish

d) vₓ = 30 m/s        vy = - 81.32 m/s

e)x = 408 m

Equations for projectile motion:

v₀ₓ = v₀ * cosα          v₀ₓ = 60*(1/2)     v₀ₓ = 30 m/s   ( constant )

v₀y = v₀ * sinα           v₀y = 60*(√3/2)     v₀y = 30*√3  m/s

a) Maximum height:

The following equation describes the motion in y coordinates

y  =  y₀ + v₀y*t - (1/2)*g*t²      (1)

To find h(max), we need to calculate t₁ ( time for h maximum)

we take derivative on both sides of the equation

dy/dt  = v₀y  - g*t

dy/dt  = 0           v₀y  - g*t₁  = 0    t₁ = v₀y/g

v₀y = 60*sin60°  = 60*√3/2  = 30*√3

g = 9.8 m/s²

t₁ = 5.30 s  the time for y maximum

And y maximum is obtained from the substitution of t₁  in equation (1)

y (max) = 200 + 30*√3 * (5.30)  - (1/2)*9.8*(5.3)²

y (max) = 200 + 275.40 - 137.64

y(max)  = 337.76 m

Total time of flying (t₂)  is when coordinate y = 0

y = 0 = y₀  + v₀y*t₂ - (1/2)* g*t₂²

0 = 200 + 30*√3*t₂  - 4.9*t₂²            4.9 t₂² - 51.96*t₂ - 200 = 0

The above equation is a second-degree equation, solving for  t₂

t =  [51.96 ±√ (51.96)² + 4*4.9*200]/9.8

t =  [51.96 ±√2700 + 3920]/9.8

t =  [51.96 ± 81.36]/9.8

t = 51.96 - 81.36)/9.8         we dismiss this solution ( negative time)

t₂ =  13.60 s  time for y = 0 time when the fly finish

The components of the velocity just before striking the ground are:

vₓ = v₀ *cos60°       vₓ = 30 m/s  as we said before v₀ₓ is constant

vy = v₀y - g *t        vy = 30*√3  - 9.8 * (13.60)

vy = 51.96 - 133.28         vy = - 81.32 m/s

The sign minus means that vy  change direction

Finally the horizontal distance is:

x = vₓ * t

x = 30 * 13.60  m

x = 408 m

5 0
2 years ago
Other questions:
  • Zinc oxide helps protect the lifeguards from damaging UV sunlight. How does this cream protect from the UV rays of the Sun? A.Th
    5·2 answers
  • Which of the following is not true of color blindness?
    10·2 answers
  • Heat engines use heat to do work. true or false.
    15·2 answers
  • What is the relationship between carbon and energy?​
    8·1 answer
  • The discovery of photons is an example of which aspect of electromagnetic radiation?
    12·2 answers
  • Why can a liquid take the shape of the bottom of its container?
    14·2 answers
  • Which statement about the water cycle is correct.
    6·1 answer
  • A tray containing 0.20kg of water at 20degree celsius is placed in a freezer. The temperature of the water drops to 0degree cels
    14·2 answers
  • During a home run, the batter only needs to run around all 4 bases if he wants to, since the ball cleared the outfield fence.
    6·1 answer
  • PLS HELP ASAP I REALLY NEED HELP AND WILL GIVE BRAINLIEST <2
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!