Answer:
Check Explanation
Step-by-step explanation:
A) The null hypothesis would be that the proportion of newly hired candidates that are not white is not significantly different from the proportion of the applicants that are not white & there is no significant evidence that the company's hiring practices are discriminatory.
Mathematically,
H₀: μ₀ = 0.53
And the alternative hypothesis would be that there is a significant difference between the proportion of newly hired candidates that are not white is not significantly different from the proportion of the applicants that are not white. More specifically, that the proportion of newly hired candidates that are not white is significantly less than the proportion of applicants that are not white & there is significant evidence that the company's hiring practices are indeed discriminatory.
Mathematically,
Hₐ: μ₀ < 0.53
B) The two errors that can come up in this hypothesis testing include -
Type I error: We reject the null hypothesis because we obtain that the proportion of newly hired candidates that are not white is significantly less than the proportion of applicants that are not white and conclude that there is indeed significant evidence that the company's hiring practices are discriminatory when in reality, there is no significant difference and hence, no discrimination.
Type II error: We accept the null hypothesis (fail to reject the null hypothesis) because we obtained that there is no significant difference between the proportion of newly hired candidates that are not white & th proportion of applicants that are not white and conclude that there is no discrimination in the company's hiring practices when in reality, there is significant difference in the stated proportions above and significant evidence that there is indeed significant evidence that the company's hiring practices are discriminatory.
C) The power of the test increases as the significance level reduces. This is because t-statistic increases as significance level reduces.
D) The standard error of the mean used in computing the t-score is given as
σₓ = (σ/√n)
It is evident that as the value of n increases, the standard error reduces and this widens the effect of the test, hence, the power of the test increases.
Hope this Helps!!!
<span>You need to look at the scale of different values and find one which is in the 40th percentile. This means 40 percent are higher and 60 percent are lower than the value you select. This can be done by figuring out the middle and going up a bit.</span>
Answer:
True
Step-by-step explanation:
Bcs, in the equation x+(-x)=0 you do x-x ( which is basically x+ -x) and they cancel each other out. This means your equation is 0=0
Answer: It is possible to draw different lines to approximate the same data. The line of best fit is only an estimate.