Answer:
3234.2 W
Explanation:
Since intensity I = Power/Area. The intensity of the light from the sun, I = power radiated by sun/area of sphere of radius, r = 1.5 × 10¹¹ m.
So, I = 3.9 10²⁶W/4π(1.5 × 10¹¹ m)² = 2.069 × 10³ W/m².
Now, the power radiated on the patch of area 0.570 m² at the equator is
P = Icos27/A = 2.069 × 10³ W/m² cos27/0.570 m² = 1843.49/0.570 = 3234.2 W
Answer:
The force is
Explanation:
From the question we are told that
The tangential resistive force is 
The mass of the wheel is m = 1.80 kg
The diameter of the wheel is 
The diameter of the sprocket is 
The angular acceleration considered is 
Generally the radius of the wheel is

=> 
=> 
Generally the radius of the sprocket is

=> 
=> 
Generally the moment of inertia of the wheel is mathematically represented as

=> 
=> 
Generally the torque experienced by the wheel due to the forces acting on it is mathematically represented as

Here
is the force acting on the sprocket
So


Generally the torques that will cause the wheel to move with
is mathematically represented as

So

The Factors are Temperature and kinetic energy, the temperature is because the particles are going to move fast which means the particles in a solid container or in solid pattern they will actually vibrate and they will expand , when temperature increase, more kinetic energy between the particles .
examples is that in the steel when you heat a steel the particles inside it will vibrate then the particles speed up because the vibration increases, therefore the temperature increases so a a thermal expansion occurs that the vibration of the particles will take up more space so the steel bar expands slightly in all Direction if the temperature Falls the reverse happens and the material or steel contracts which means get smaller .
another example is the thermometer, the thermometer has a liquid inside it which is Mercury or alcohol this liquid expands when the temperature rises, the tube is made narrow so that a small increase in volume of the liquid produces a large movement along the tube.
Answer: The molar heat capacity of aluminum is 
Explanation:
As we know that,
.................(1)
where,
q = heat absorbed or released
= mass of water = 130.0 g
= mass of aluminiunm = 23.5 g
= final temperature
=
= temperature of water =
= temperature of aluminium =
= specific heat of water= 
= specific heat of aluminium= ?
Now put all the given values in equation (1), we get
Molar mass of Aluminium = 27 g/mol
Thus molar heat capacity =
2nd and only 2nd option is right