Answer:
works out for only one week
Explanation:
In order to develop a good habit, there are certain things that you can do like:
-Develop a consistent schedule of exercise which allows you to work everyday over a period of time which helps you to create a routine that you would get used to it creating a habit.
-Work out with a friend which allows you to have someone to motivate you and that would go everyday with you which would help to be consistent.
-Use success strategies that are ways in which you can achieve your goal of creating a good habit to exercise.
According to this, the option that would not help Bob develop a good habit is if he works out for only one week as doing something everyday is what would help you to create the habit.
Answer:
g = 0.85 m
Explanation:
g = 
were; g is the acceleration due to Earth's gravity, G is Newton's gravitation constant (6.674 x
N
), M is the mass of the earth (5.972 x
kg), and h is the distance of meteoroid to the earth.
h = 3.40 x R
= 3.40 x 6371 km
h = 21661.4 km
= 21661400 m
Thus,
g = 
= 
= 0.84944
g = 0.85 m
The acceleration due to the Earth's gravitation is 0.85 m
.
Answer:

Explanation:
Using Newton's second law, we calculate the magnitude of the electric force between the spheres:

The magnitude of the charge in both spheres is the same. So, we calculate the charge, using Coulomb's law:

Answer:
It's 1.0000042 times longer in summer than in winter. It represents a 1.6 centimeters difference between seasons.
Explanation:
The linear coefficient of thermal expansion for steel is about
. From the equation of linear thermal expansion, we have:

Taking the winter day as the initial, and the summer day as the final, we can take the relationship between them:
![L_{summer}=L_{winter}[1+(1.2*10^{-7}\°C^{-1})(30\°C+5\°C)]\\\\L_{summer}=(1.0000042)L_{winter}](https://tex.z-dn.net/?f=L_%7Bsummer%7D%3DL_%7Bwinter%7D%5B1%2B%281.2%2A10%5E%7B-7%7D%5C%C2%B0C%5E%7B-1%7D%29%2830%5C%C2%B0C%2B5%5C%C2%B0C%29%5D%5C%5C%5C%5CL_%7Bsummer%7D%3D%281.0000042%29L_%7Bwinter%7D)
It means that the bridge is 1.0000042 times longer in summer than in winter. If we multiply it by the length of the bridge, we obtain that the difference is of about 1.6 centimeters between the two seasons.