Find the intensity of the electromagnetic wave described in each case.
(a) an electromagnetic wave with a wavelength of 645 nm and a peak electric field magnitude of 8.5 V/m.
(b) an electromagnetic wave with an angular frequency of 6.3 ✕ 1018 rad/s and a peak magnetic field magnitude of 10−10 T.
<span>Answer:
Spherical Distribution
Feedback: Correct
The stars in the halo component have highly-inclined random orbits that orbit the center of our Galaxy. The stars within the halo would therefore make up a spherical distribution of stars surrounding the center of the Galaxy. In comparison, the disk stars move in elliptical orbits, which are nearly circular and are confined to the disk of the Galaxy. Disk stars therefore have very small inclinations and do not move above or below the plane of the Galactic disk.</span>
Answer:
distance cover is = 102.53 m
Explanation:
Given data:
speed of object is 17.1 m/s


from equation of motion we know that

where d_1 is distance covered in time t1
so
=


where d_2 is distance covered in time t2


distance cover is = 213.31 - 110.78 = 102.53 m
To solve this problem we will apply the concept related to destructive interference (from the principle of superposition). This concept is understood as a superposition of two or more waves of identical or similar frequency that, when interfering, create a new wave pattern of less intensity (amplitude) at a point called a node. Mathematically it can be described as

Where,
d = Path difference
= wavelength
n = Any integer which represent the number of repetition of the spectrum
In this question the distance between the two source will be minimum for the case of minimum path difference, then n= 1



Therefore the minimum distance that should you separate two sources emitting the same waves is 2.5mm
If the net force is 4 N, and Frankie is pulling the rope with 7 N, Carol must be pulling the rope with 11 N (I think that Carol is going to win the tug-of-war...).