Your answer should be 9.7 :)
Answer:
- the expected value is 8
- the standard deviation is 2.8284
Explanation:
Given the data in the question;
The model N(t), the number of planets found up to time t, as a poisson process,
∴ N(t) has distribution of poisson distribution with parameter (λt)
so
the mean is;
λ = 1 every month = 1/3 per month
E[N(t)] = λt
E[N(t)] = (1/3)(24)
E[N(t)] = 8
Therefore, the expected value is 8
For poisson process, Variance and mean are the same,
Var[N(t)] = Var[N(24)]
Var[N(t)] = E[N(24)]
Var[N(t)] = 8
so the standard deviation will be;
σ[N(24)] = √(Var[N(t)] )
σ[N(24)] = √(8 )
σ[N(24)] = 2.8284
Therefore, the standard deviation is 2.8284
The speed of a wave in a uniform medium doesn't depend on its wavelength.
False theyre called plate boundries
Answer: 3 radians/meter.
Explanation:
The general sinusoidal function will be something like:
y = A*sin(k*x - ω*t) + C
Where:
A is the amplitude.
k is the wave number.
x is the spatial variable
ω is the angular frequency
t is the time variable.
C is the mid-value.
The rule that we can use to solve this problem, is that the argument of the sin( ) function must be in radians (or in degrees)
Then if x is in meters, the wave-number must be in radians/meters, so when these numbers multiply the "meters" part is canceled.
Then for the case of the function:
y(x,t) = 0.1 sin(3x + 10t)
Where x is in meters, the units of the wave number (the 3) must be in radians/meters. Then the angular wave number is 3 radians/meter.