Answer:
1. h(x) = x + 5—> f(x) = x² + 4x - 5, and g(x) = x - 1
2. h(x) = x + 3 —> f(x) = x² - 9, and g(x) = x - 3
3. h(x) = x + 4—> f(x) = x² - 16, and g(x) = x - 4
4.h(x) = x - 1—> f(x) = x² - 4x + 3, and g(x)= x - 3
Step-by-step explanation:
A) f(x) = x² - 9, and g(x) = x - 3
We are told that; h(x) = f(x)/g(x)
f(x) = x² - 9 can be factorized to;
f(x) = (x + 3)(x - 3)
Thus; h(x) = (x + 3)(x - 3)/(x - 3)
(x - 3) will cancel out to give;
h(x) = x + 3
B) f(x) = x² - 4x + 3, and g(x)= x - 3
x² - 4x + 3 can be factorized as;
(x - 1)(x - 3)
Thus; f(x) = (x - 1)(x - 3)
h(x) = (x - 1)(x - 3)/(x - 3)
h(x) = x - 1
C) f(x) = x² + 4x - 5, and g(x) = x - 1
x² + 4x - 5 can be factorized as;
(x - 1)(x + 5)
Thus; f(x) = (x - 1)(x + 5)
h(x) = (x - 1)(x + 5)/(x - 1)
h(x) = x + 5
D) f(x) = x² - 16, and g(x) = x - 4
x² - 16 can be expressed as;
(x + 4)(x - 4)
Thus; f(x) = (x + 4)(x - 4)
h(x) = (x + 4)(x - 4)/(x - 4)
h(x) = x + 4