Answer:
you are correct :)
Step-by-step explanation:
complementary angels equal 90 degrees so you do 90-52
supplementary angels on the other hand, equal 180 degrees
Answer:
same here
Step-by-step explanation:
idekhshdhdhrhryryryrue
Let Natalie be x, and Fred, y.
So based on 1st condition, we get
x + y =43 - Equation 1
â´ x = 43-y - Equation 2
Now based on 2nd condition, we get
44x+y=88
Using x from Equation 2, we get
44(43-y) + y = 88
â´ 44x43 - 44y + y = 88
â´ 1892 -44y + y = 88
â´ -44y + y = 88 - 1892
â´ 43y =1804
â´ y = 1804/43
â´ y = 41.95
Using the value of y in Equation 2
x = 43 - 41.95
â´ x = 1.05
So Natalie is 1.05 yrs and Fred is 41.95 yrs old.
Answer:
![[ln \frac{x(x^2 + 1)}{(x + 1)}]^\frac{3}{2}](https://tex.z-dn.net/?f=%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D)
Step-by-step explanation:
![\frac{3}{2} [ln x(x^2 + 1) - ln(x + 1)]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%20%5Bln%20x%28x%5E2%20%2B%201%29%20-%20ln%28x%20%2B%201%29%5D)
ln(m/n)= lnm - ln(n)
![\frac{3}{2}[ln x(x^2 + 1) - ln(x + 1)]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%5Bln%20x%28x%5E2%20%2B%201%29%20-%20ln%28x%20%2B%201%29%5D)
![\frac{3}{2}[ln \frac{x(x^2 + 1)}{(x + 1)}]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D)
3/2 is before ln. so we move the fraction 3/2 to the exponent
as per log property we move the fraction to the exponent
![[ln \frac{x(x^2 + 1)}{(x + 1)}]^\frac{3}{2}](https://tex.z-dn.net/?f=%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D)
2, 67, and 83 are all prime. 63 and 91 are composite. For the bottom question the answer is A and B.