This distance is known as the amplitude of the wave, and is the characteristic height of the wave, above or below the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave. The SI unit of amplitude is the metre (m).
<span>A. An impulse of a force changes the momentum of a body and has the same units and dimensions as momentum.</span>
Answer:
a) 



b) 
Explanation:
From the exercise we got the ball's equation of position:

a) To find the average velocity at the given time we need to use the following formula:

Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001



--


--


--


b) To find the instantaneous velocity we need to derivate the equation


Answer:
The magnitudes of the second force is 
The magnitudes of the resultant force is 
Explanation:
From the question we are told that
The force is 
The angle made with second force 
The angle between the resultant force and the first force 
For us to solve problem we are going to assume that
The magnitude of the second force is Z N
The magnitude of the resultant force is R N
According to Sine rule

Substituting values

According to cosine rule

Substituting values

