Answer:
W=0.94J
Explanation:
Electrostatic potential energy is the energy that results from the position of a charge in an electric field. Therefore, the work done to move a charge from point 1 to point 2 will be the change in electrostatic potential energy between point 1 and point 2.
This energy is given by:

So, the work done to move the chargue is:

The work is positive since the potential energy in 1 is greater than 2.
Answer:
0.47 m
Explanation:
= Number of vibrations = 37
= total time taken = 33 s
= time period of each vibration
frequency of vibration is given as
Hz
= distance traveled along the rope = 421 cm = 4.21 m
= time taken to travel the distance = 8 s
= speed of the wave
Speed of the wave is given as

= wavelength of the harmonic wave
wavelength of the harmonic wave is given as

The Answer is true, the saying opposites attract are true for magnets when poles match though they repel.
Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.
You get a lot of detailed information. hope this helped :)