The three longest wavelengths for the standing waves on a 264-cm long string that is fixed at both ends are:
- 5.2 meters.
- 2.6 meters.
- 1.7meters.
Given data:
Length of the fixed string = 264cms = 2.64 meters
The wavelength for standing waves is given by:
λ = 2L/n
where,
- λ is the wavelength
- L is the length of the string
For n = 1,
= 5.2 meters
For n = 2,
= 2.6 meters
For n = 3,
= 1.7 meters
To learn more about standing waves: brainly.com/question/14151246
#SPJ4
Answer:

Explanation:
Using the conservation of energy we have:

Let's solve it for v:

So the speed at the lowest point is 
Now, using the conservation of momentum we have:

Therefore the speed of the block after the collision is 
I hope it helps you!
Answer:
no.
Explanation:
because the mass of an object never changes.
A sample of nitrogen gas has a volume of 5.0 ml at a pressure of 1.50 atm. what is the pressure exerted by the gas if the volume increases to 30.0 ml, at constant temperature is 0.25atm.
On constant temperature, the pressure and volume relation become constant before and after the change in quantitities have occurred.
According to Boyle's Law,
P₁V₁ = P₂V₂
where, P₁ is pressure exerted by the gas initially
V₁ is the volume of gas initially
P₂ is pressure exerted by the gas finally
V₂ is the volume of gas finally
Given,
P₁ = 1.5 atm
V₁ = 5 ml
V₂ = 30 ml
P₂ =?
On substituting the given values in the above equation:
P₁V₁ = P₂V₂
1.5 atm × 5 ml = P₂ × 30 ml
P₂ = 0.25 atm
Hence, pressure exerted by the gas is 0.25atm.
Learn more about Boyle's Law here, brainly.com/question/1437490
#SPJ4
The deeper you go, the more rock must be supported so the more force is required and the pressure goes up.