Answer:
The angle between the red and blue light is 1.7°.
Explanation:
Given that,
Wavelength of red = 656 nm
Wavelength of blue = 486 nm
Angle = 37°
Suppose we need to find the angle between the red and blue light as it leaves the prism


We need to calculate the angle for red wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle for blue wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle between the red and blue light
Using formula of angle

Put the value into the formula


Hence, The angle between the red and blue light is 1.7°.
Answer:
The minumum speed the pail must have at its highest point if no water is to spill from it
= 2.64 m/s
Explanation:
Working with the forces acting on the water in the pail at any point.
The weight of water is always directed downwards.
The normal force exerted on the water by the pail is always directed towards the centre of the circle of the circular motion.
And the centripetal force, which keeps the system in its circular motion, is the net force as a result of those two previously mentioned force.
At the highest point of the motion, the top of the vertical circle, the weight and the normal force on the water are both directed downwards.
Net force = W + (normal force)
But the speed of this motion can be lowered enough to a point where the normal force becomes zero at the moment the pail reaches the highest point of its motion. Any speed lower than this value would result in the water spilling out of the pail. The water would not be able to resist the force of gravity.
At this point of minimum velocity,
Normal force = 0
Net force = W
Net force = centripetal force = (mv²/r)
W = mg
(mv²/r) = mg
r = 0.710 m
g = 9.8 m/s²
v² = gr = 9.8 × 0.71 = 6.958
v = √(6.958) = 2.64 m/s
Hope this Helps!!!
<h2>Given that,</h2>
Mass of two bumper cars, m₁ = m₂ = 125 kg
Initial speed of car X is, u₁ = 10 m/s
Initial speed of car Z is, u₂ = -12 m/s
Final speed of car Z, v₂ = 10 m/s
We need to find the final speed of car X after the collision. Let v₁ is its final speed. Using the conservation of momentum to find it as follows :

v₁ is the final speed of car X.

So, car X will move with a velocity of -12 m/s.
Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v = 
let's calculate
v = 
v = 
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C
Your answer is B. The human eye can only detect color and Tv waves