Answer:
A) a = 5.673 m/s²
The direction will be upwards vertically towards the point where it is suspended.
B) T = 113.2 N
Explanation:
A) We are given;
Weight of bowling ball; W = 71.7 N
Speed; v = 4.6 m/s
Rope length; r = 3.73 m
Now, formula for the centripetal acceleration is;
a = v²/r
Thus; a = 4.6²/3.73
a = 5.673 m/s²
The direction will be upwards vertically towards the point where it is suspended.
B) since weight is 71.7 N, it means that;
Mass = weight/acceleration = 71.7/9.8
Mass(m) = 7.316 kg
Thus,
Centripetal force is;
F_cent = 7.316 × 5.673
F_cent = 41.5 N
Thus, Tension in the rope is;
T = W + F_cent
T = 71.7 + 41.5
T = 113.2 N
E = I R
Voltage = (current)×(resistance).
V = 5A x 5 ohms = 25 volts.
The best answer would be C.
The mass of an element depends on the number of particles found in the nucleus of the atom. Atomic mass can be computed by adding the number of protons and the number of neutrons. Protons and neutrons are found in the nucleus of an atom. So the answer must be letter C.
Answer:
I would love to help, Could you put the question in English?
Explanation: