1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
3 years ago
11

A piano wire with mass 2.60g and length 84.0 cm is stretched with a tension of 25.0 N. A wave with frequency 120.0 Hz and amplit

ude 1.6 mm travels along the wire. Calculate the average power carried by the wave. What is the average power if the wave amplitude is halved?
Physics
1 answer:
likoan [24]3 years ago
4 0

Answer:

Power will be 0.2023 watt

And when amplitude is halved then power will be 0.0505 watt

Explanation:

We have given mass of the Piano wire m = 2.60 gram = 0.0026 kg

Length of wire l = 84 cm = 0.84 m

So mass density \mu =\frac{m}{l}=\frac{0.0026}{0.84}=0.0031kg/m

Tension in the wire T = 25 N

Frequency f = 120 Hz

So angular frequency \omega =2\pi f=2\times 3.14\times 120=753.6rad/sec

And amplitude A = 1.6 mm = 0.0016 m

We have to find the generated power

Power is given by P=\frac{1}{2}\sqrt{\mu T}\omega ^2A^2=\frac{1}{2}\times \sqrt{0.0031\times 25}\times 753.6^2\times 0.0016^2=0.2023watt

From the relation we can see that power P\ \propto\ A^2

So if amplitude is halved then power will be \frac{1}{4} times

So power will be equal to \frac{0.2023}{2}=0.0505watt

You might be interested in
Los rieles de una vía de tren de acero tienen 1500 m de longitud. ¿Qué longitud tendrá cuando
melomori [17]

Answer:

can you translate the question

into english

6 0
3 years ago
5. Forces have
Verdich [7]

5)

In physics, forces are interactions that are able to change the velocity of an object.

Force is a vector quantity, so it has a magnitude and a direction.

The SI units of the force is the Newton (N).

Whenever an unbalanced force is applied to an object, the object experiences an acceleration, according to Newton's second law of motion:

F=ma

where

F is the force

m is the mass of the object

a is its acceleration

So, the acceleration of an object is proportional to the force applied:

a=\frac{F}{m}

6)

In physics, arrows are used to represent vector quantities. Therefore, they are also used to represent forces.

In particular, when a vector quantity is represented by an arrowr:

- The length of the arrow is proportional to the magnitude of the vector quantity

- The direction of the arrow corresponds to the direction of the vector quantity

Therefore, if a force is represented through an arrow:

- The length of the arrow shows the strength (magnitude) of the force

- The direction of the arrow shows the direction of the force

7)

As we said in part 5), the SI units of the force is the Newton (N).

We can rewrite the Newton in terms of fundamental units only. We can do it starting from the equation:

F=ma

where

F is the force

m is the mass

a is the acceleration

- The mass is measured in kilograms (kg)

- The acceleration is measured in meters per second squared (m/s^2)

Therefore, 1 N corresponds to:

[N]=[kg][\frac{m}{s^2}]=[kg\cdot m \cdot s^{-2}]

B)

Gravity is an attractive force that exists between all objects that have mass. See more explanations about gravity in part 4).

3)

Mass is a scalar quantity; it gives us a measure of the "amount of matter" contained in an object.

The SI unit of the mass is the kilogram (kg).

Being a scalar, mass has no direction, but only a magnitude.

Moreover, the mass is an intrinsec property of an object: therefore, it does not depend on the location of the object. So, an object has always the same mass, either it is on Earth or on another planet.

On the other hand, the force of gravity on an object depends on its location, so it changes.

4)

As we said in part 3), gravity is an attractive force that exists between all objects that  have mass.

The magnitude of the force of gravity between two objects is given by the Universal Law of gravitation:

F=\frac{Gm_1 m_2}{r^2}

where

G is the gravitational constant

m1, m2 are the masses of the two objects

r is the separation between the objects

From the equation above, we observe that:

- all objects are attracted to one  another with a gravitational force that is proportional to the mass of the objects  and inversely proportional to the square of the distance between them.

And so:

a. When the mass of one or both objects increases, the gravitational force between  the objects increases

b. When the distance between two objects increases, the attraction between the  objects decreases

7 0
3 years ago
What happens when solar energy heats a body of water?
Nataliya [291]
Explanation: Evaporation happens when a liquid substance becomes a gas. When water is heated, it evaporates. The molecules move and vibrate so quickly that they escape into the atmosphere as molecules of water vapor (Dunn,1993).
6 0
3 years ago
Read 2 more answers
a car travelling at 50m/h on a horizontal highway (a) if the coefficient of static friction between road and tyres on a rainy da
aleksandrvk [35]
Hope this helps!

-Lilly

3 0
3 years ago
Why do the planets appear in different locations in the night sky while the pattern of stars in a constellation stays the same?
Goshia [24]
I'm sure you've noticed that an airplane high in the sky, far away
from you, looks like it's moving very slowly.  At the same time,
somebody passing you on a skateboard whizzes past you at
high speed.  The farther away something is from you, the slower
it appears to move.

The nearest star outside the solar system is almost 32 thousand times
as far away from us as the farthest visible planet (Saturn) is, and all of the
other stars are farther than that. 

That's why you have to wait a few thousand years before you notice
that the shape of a constellation has changed.

To put it a slightly different way . . . Everything is in motion.  The motion is
more noticeable for nearby things, and less noticeable for farther-away things. 
Objects within our solar system are the only ones near enough so that a human
lifetime is a long enough period in which to notice the change in their position.
Even Pluto moves less then 1.5° against the 'background' stars in a whole year.

This all makes me feel small.  How about you ?
7 0
3 years ago
Read 2 more answers
Other questions:
  • The earth is rotating on its axis. It will continue to rotate unless acted upon by an outside force. This is an example of Newto
    6·2 answers
  • Which characteristics can be used to differentiate star systems? Check all that apply.
    13·2 answers
  • You have a 192 −Ω−Ω resistor, a 0.409 −H−H inductor, a 4.95 −μF−μF capacitor, and a variable-frequency ac source with an amplitu
    8·1 answer
  • Consider the following equations. 3 A + 6 B → 3 D, ΔH = -446 kJ/mol E + 2 F → A, ΔH = -107.9 kJ/mol C → E + 3 D, ΔH = +61.9 kJ/m
    8·1 answer
  • Which of the following laws best define this statement? the total amount of energy in a closed system stays the same.
    9·1 answer
  • In ultimate Frisbee players are allowed to run with the disc? T/F
    8·1 answer
  • What is a moving inclined plane??
    6·1 answer
  • The AB rope is fixed to the ground at its A end, and forms 30º with the vertical. Its other end is connected to two ropes by mea
    11·1 answer
  • In a house, 3 bulbs of 60 watt each are lighted for 3 hours daily, 4 fans of 100 watt each are used for 8 hours daily and an ele
    8·1 answer
  • A 3000-kg spaceship is moving away from a space station at a constant speed of 3 m/s. The astronaut in the spaceship decides to
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!