Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.
We have a wave function: D(y,t) and we want to know some things about it. 1. The direction the wave is travelling is negative y direction or -y. 2. Since sound waves are longitudinal waves, this sound wave is oscillating along the y axis. 3. The wavelength we can get from k=2π/λ, k is the wave number, λ is the wavelength. So λ=2π/k=6.28/8.96=0.7 m. 4. Before i get the wave speed i will calculate the period of oscillation. It can be calculated from: ω=2πf where ω is angular frequency and f is wave frequency. So f=ω/2π=3140/6.28=500 Hz and the period is T=1/f=1/500=0.002 s. 5. Wave speed is v=λ*f= 0.7*500=350 m/s.
Answer:
The formula for force according to Newton's second law of motion is F=ma or force for an object to move is equal to mass times acceleration.
Acceleration or average acceleration defined as change in velocity per time.
F=ma
F=1.2x10³kg*(20m/s)(1/5s)=4.8x10³ Newtons
Explanation:
fthat's not the answer then i'm sorry
<span>D. It would move in a straight line at a constant speed.</span>