The gravitational force between two object depends on their masses and on their distance.
Since the formula is

If the masses grow, the force also grows. But I'm assuming the two objects are fixed, so you can't enlarge their mass.
So, the only option remaining is to lower their distance: since it sits at the denominator, a smaller value of d results in a bigger value for F.
So, if you reduce the distance between two objects, the gravitational force between them will always result in an increase
<span>a scale of temperature with absolute zero as zero, and the triple point of water as exactly 273.16 degrees.</span>
Answer:
11 because the number of protons is the atomic humber
Explanation:
Answer:
a) θ₁ = 23.14 °
, b) θ₂ = 51.81 °
Explanation:
An address network is described by the expression
d sin θ = m λ
Where is the distance between lines, λ is the wavelength and m is the order of the spectrum
The distance between one lines, we can find used a rule of proportions
d = 1/600
d = 1.67 10⁻³ mm
d = 1-67 10⁻³ m
Let's calculate the angle
sin θ = m λ / d
θ = sin⁻¹ (m λ / d)
First order
θ₁ = sin⁻¹ (1 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₁ = sin⁻¹ (3.93 10⁻¹)
θ₁ = 23.14 °
Second order
θ₂ = sin⁻¹ (2 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₂ = sin⁻¹ (0.786)
θ₂ = 51.81 °
Answer:
I think its B. James would have a smaller mass on the Moon than he does on Earth.
sorry if i did it wrong