Technically yes you are i think
Compression is above the equilibrium and rarefaction is below
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
Answer:
2.63 cm
Explanation:
Hooke's law gives that the force F is equal to cy where c is spring constant and x is extension
Making c the subject of the formula then

Since F is gm but taking the given mass to be F

By substitution now considering F to be 3.3 kg

Answer:
The child represented by a star on the outside path.
Explanation: