Answer:
<em>The maximum voltage that can be applied without damaging the resistor is 4.85 V</em>
Explanation:
<u>Electric Power in a Resistor</u>
Given a resistor or resistance R connected to a circuit of voltage V carrying a current I. The relation between these three magnitudes is given by Ohm's Law:
V = R.I
The dissipated power P of a resistor can be calculated by the following equation, known as Joule's first law:

Solving the first equation for I:

Substituting in the second equation:

Simplifying:

Solving for V:

The resistor has a resistance of R=47Ω and can hold a maximum power of P=0.5 W, thus the maximum voltage is:


V = 4.85 V
The maximum voltage that can be applied without damaging the resistor is 4.85 V
Answer:

Explanation:
Gravitational potential energy is the energy an object possesses due to its position. It is the product of mass, height, and acceleration due to gravity.

The object has a mass of 150 kilograms and is raised to a height of 20 meters. Since this is on Earth, the acceleration due to gravity is 9.8 meters per square second.
- m= 150 kg
- g= 9.8 m/s²
- h= 20 m
Substitute the values into the formula.

Multiply the three numbers and their units together.


Convert the units.
1 kilogram meter square per second squared (1 kg *m²/s²) is equal to 1 Joule (J). Our answer of 29,400 kg*m²/s² is equal to 29,400 Joules.

The crate has <u>29,400 Joules</u> of potential energy.
Answer:
The value of the time constant is 558.11 sec.
Explanation:
Given that,
Pendulum length = 1 m
Initial angle = 15°
Time = 1000 s
Reduced amplitude = 2.5°
We need to calculate the value of the time constant
Using formula of damping oscillation

Where,
=amplitude
=amplitude at t = 0
Put the value into the formula





Hence, The value of the time constant is 558.11 sec.
Answer:
After 1 half-life (500 years), 500 g of the parent isotope will remain. After 2 half-lives (1000 years), 250 g of the parent isotope will remain. After 3 half-lives (1500 years), 125 g of the parent isotope will remain. After 4 half-lives (2000 years), 62.5 g of the parent isotope will remain.
Explanation:
I believe the answer is B