Answer:
m=ρV
V=4/3 * pi * r3
V=1.3 * 3.14 * 3.9^3
V=242.14 cm^3
m=7.58 * 242.14
m=1.8 kG
Explanation:
1. We calculate volume for sphere.
2. Then we calculate mass of sphere.
The answer is D because it’s going by the miles
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
The answer is volt for this question.
I hope is correct if not I’m sorry.
The answer is C. Watson and Crick developed the Double Helix model seen in the diagram.