<span>
The purpose of a gasoline car engine is to convert gasoline into motion
so that your car can move. Currently the easiest way to create motion
from gasoline is to burn the gasoline inside an engine.
Therefore, a car engine is an internal combustion engine -- combustion takes place internally.
There is such a thing as an external combustion engine. A steam engine
in old-fashioned trains and steam boats is the best example of an
external combustion engine. The fuel (coal, wood, oil, whatever) in a
steam engine burns outside the engine to create steam, and the steam
creates motion inside the engine. Internal combustion is a lot more
efficient (takes less fuel per mile) than external combustion, plus an
internal combustion engine is a lot smaller than an equivalent external
combustion engine. This explains why we don't see any cars using steam
engines.
To understand the basic idea behind how a reciprocating internal
combustion engine works, it is helpful to have a good mental image of
how "internal combustion" works.
One good example is an old Revolutionary War cannon. You have probably
seen these in movies, where the soldiers load the cannon with gun powder
and a cannon ball and light it. That is internal combustion, but it is
hard to imagine that having anything to do with engines.
A potato cannon uses the basic principle behind any reciprocating
internal combustion engine: If you put a tiny amount of high-energy fuel
(like gasoline) in a small, enclosed space and ignite it, an incredible
amount of energy is released in the form of expanding gas. You can use
that energy to propel a potato 500 feet. In this case, the energy is
translated into potato motion. You can also use it for more interesting
purposes. For example, if you can create a cycle that allows you to set
off explosions like this hundreds of times per minute, and if you can
harness that energy in a useful way, what you have is the core of a car
engine! </span>
B.) <span>The range of all electromagnetic radiation is known as the "Electromagnetic Spectrum"
Hope this helps!
</span>
Humberto should expect to see that all bulbs in circuit 1 will shine more dimly than the original bulbs, while all bulbs in circuit 2 will have the same brightness as the original bulbs.
B) All bulbs in circuit 1 will shine more dimly than the original bulbs, while all bulbs in circuit 2 will have the same brightness as the original bulbs.
Answer:
Twice as fast
Explanation:
Solution:-
- The mass of less massive cart = m
- The mass of Massive cart = 2m
- The velocity of less massive cart = u
- The velocity of massive cart = v
- We will consider the system of two carts to be isolated and there is no external applied force on the system. This conditions validates the conservation of linear momentum to be applied on the isolated system.
- Each cart with its respective velocity are directed at each other. And meet up with head on collision and comes to rest immediately after the collision.
- The conservation of linear momentum states that the momentum of the system before ( P_i ) and after the collision ( P_f ) remains the same.

- Since the carts comes to a stop after collision then the linear momentum after the collision ( P_f = 0 ). Therefore, we have:

- The linear momentum of a particle ( cart ) is the product of its mass and velocity as follows:
m*u - 2*m*v = 0
Where,
( u ) and ( v ) are opposing velocity vectors in 1-dimension.
- Evaluate the velcoity ( u ) of the less massive cart in terms of the speed ( v ) of more massive cart as follows:
m*u = 2*m*v
u = 2*v
Answer: The velocity of less massive cart must be twice the speed of more massive cart for the system conditions to hold true i.e ( they both come to a stop after collision ).
Explanation:
distance and time both are scaler quantity