1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
3 years ago
10

What is the heat flux (W/m2) to an object when subjected to convection heat transfer environment given: 24 °C = the surface temp

erature of the object, 82 °C = the bulk temperature of the fluid adjacent to the object, and the convection heat transfer coefficient = 49 W/(m^2 K)?

Engineering
1 answer:
xxMikexx [17]3 years ago
4 0

Answer:

attached below

Explanation:

You might be interested in
Based on the graphs of stress-strain from the V-MSE site, how would you characterize the general differences between polymers an
Pepsi [2]

Answer:

Option A

Explanation:

Alloys are metal compounds with two or more metals or non metals to create new compounds that exhibit superior structural properties. Alloys have high level of hardness that resists deformation thereby making it less ductile compared to polymers. This is due to the varying difference in the chemical and physical characteristics of the constituent metals in the alloy.

6 0
3 years ago
Exhaust gas from a furnace is used to preheat the combustion air supplied to the furnace burners. The gas, which has a flow rate
Monica [59]

Answer:

The total tube surface area in m² required to achieve an air outlet temperature of 850 K is 192.3 m²

Explanation:

Here we have the heat Q given as follows;

Q = 15 × 1075 × (1100 - t_{A2}) = 10 × 1075 × (850 - 300) = 5912500 J

∴ 1100 - t_{A2} = 1100/3

t_{A2}  = 733.33 K

\Delta \bar{t}_{a} =\frac{t_{A_{1}}+t_{A_{2}}}{2} - \frac{t_{B_{1}}+t_{B_{2}}}{2}

Where

\Delta \bar{t}_{a} = Arithmetic mean temperature difference

t_{A_{1} = Inlet temperature of the gas = 1100 K

t_{A_{2} = Outlet temperature of the gas = 733.33 K

t_{B_{1} =  Inlet temperature of the air = 300 K

t_{B_{2} = Outlet temperature of the air = 850 K

Hence, plugging in the values, we have;

\Delta \bar{t}_{a} =\frac{1100+733.33}{2} - \frac{300+850}{2} = 341\tfrac{2}{3} \, K = 341.67 \, K

Hence, from;

\dot{Q} = UA\Delta \bar{t}_{a}, we have

5912500  = 90 × A × 341.67

A = \frac{5912500  }{90 \times 341.67} = 192.3 \, m^2

Hence, the total tube surface area in m² required to achieve an air outlet temperature of 850 K = 192.3 m².

4 0
3 years ago
What is Back EMF? How does it limits the speed of a permanent magnet DC?
ss7ja [257]

Answer and Explanation:

The DC motor has coils inside it which produces magnetic field inside the coil and due to thus magnetic field an emf is induced ,this induced emf is known as back emf. The back emf always acts against the applied voltage. It is represented by E_b

The back emf of the DC motor is given by E_b=\frac{NP\Phi }{60A}

Here N is speed of the motor ,P signifies the number of  poles ,Z signifies the the total number of conductor  and A is number of parallel paths

As from the relation we can see that back emf and speed ar dependent on each other it means back emf limits the speed of DC motor

8 0
3 years ago
Determine the voltages at all nodes and the currents through all branches. Assume that the transistor B is 100,
iren [92.7K]

Answer:

The voltages of all nodes are, IE = 4.65 mA, IB =46.039μA,  IC=4.6039 mA, VB = 10v, VE =10.7, Vc =4.6039 v

Explanation:

Solution

Given that:

V+ = 20v

Re = 2kΩ

Rc = 1kΩ

Now we will amke use of the method KVL in the loop.

= - Ve + IE . Re + VEB + VB = 0

Thus

IE = V+ -VEB -VB/Re

Which gives us the following:

IE = 20-0.7 - 10/2k

= 9.3/2k

so, IE = 4.65 mA

IB = IE/β +1 = 4.65 m /101

Thus,

IB = 0.046039 mA

IB = 46.039μA

IC =βIB

Now,

IC = 100 * 0.046039

IC is 4.6039 mA

Now,

VB = 10v

VE = VB + VEB

= 10 +0.7 = 10.7 v

So,

Vc =Ic . Rc = 4.6039 * 1k

=4.6039 v

Finally, this is the table summary from calculations carried out.

Summary Table

Parameters          IE       IC           IB            VE       VB         Vc

Unit                     mA     mA          μA            V           V          V

Value                  4.65    4.6039   46.039    10.7      10     4.6039

4 0
2 years ago
Can you help me? I need solution of this question.
ollegr [7]

Answer:hmmmmmmmmmm give an hour.

Explanation:

...

6 0
3 years ago
Other questions:
  • What is the stress concentration factor of a shaft in torsion, where D=1.25 in. and d=1 in. and the fillet radius is, r=0.2 in.a
    7·1 answer
  • Write a C++ program to display yearly calendar. You need to use the array defined below in your program. // the first number is
    13·1 answer
  • Which of the following scenarios describes someone who is a materials engineer?
    13·1 answer
  • 500 flights land each day at San Jose’s airport. Assume that each flight has a 5% chance of being late, independently of whether
    5·1 answer
  • In the well-insulated trans-Alaska pipeline, the high viscosity of the oil and long distances cause significant pressure drops,
    12·1 answer
  • What are the two reasons for a clear cut
    10·1 answer
  • A Pelton wheel is supplied with water from a lake at an elevation H above the turbine. The penstock that supplies the water to t
    6·1 answer
  • A 100-ampere resistor bank is connected to a controller with conductor insulation rated 75°C. The resistors are not used in conj
    8·1 answer
  • What is the tolerance for number 4?
    12·1 answer
  • if both the ram air input and drain hole of the pitot system become blocked, the indicated airspeed will
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!