Answer:
The answer is below
Explanation:
Let A represent the first switch, B represent the second switch and C represent the bulb. Also, let 0 mean turned off and 1 mean turned on. Since when both switches are in the same position, the light is off. This can be represented by the following truth table:
A B C (output)
0 0 0
0 1 1
1 0 1
1 1 0
The logic circuit can be represented by:
C = A'B + AB'
The output (bulb) is on if the switches are at different positions; if the switches are at the same position, the output (bulb) is off. This is an XOR gate. The gate is represented in the diagram attached below.
Answer: a) 0.948 b) 117.5µf
Explanation:
Given the load, a total of 2.4kw and 0.8pf
V= 120V, 60 Hz
P= 2.4 kw, cos θ= 80
P= S sin θ - (p/cos θ) sin θ
= P tan θ(cos^-1 (0.8)
=2.4 tan(36.87)= 1.8KVAR
S= 2.4 + j1. 8KVA
1 load absorbs 1.5 kW at 0.707 pf lagging
P= 1.5 kW, cos θ= 0.707 and θ=45 degree
Q= Ptan θ= tan 45°
Q=P=1.5kw
S1= 1.5 +1.5j KVA
S1 + S2= S
2.4+j1.8= 1.5+1.5j + S2
S2= 0.9 + 0.3j KVA
S2= 0.949= 18.43 °
Pf= cos(18.43°) = 0.948
b.) pf to 0.9, a capacitor is needed.
Pf = 0.9
Cos θ= 0.9
θ= 25.84 °
(WC) V^2= P (tan θ1 - tan θ2)
C= 2400 ( tan (36. 87°) - tan (25.84°)) /2 πf × 120^2
f=60, π=22/7
C= 117.5µf
Answer:
Three ways that engineers explore possible solutions in their projects are;
1) Prototyping
2) Simulation
3) Calculations
Explanation:
1) Prototyping is the process of experimental testing of samples of design, or model of a product with the possibility of the inclusion of control of parameters in order to determine the workability of a solution.
2) Simulation is the process of creating an imitation of a situation, operation or process which can be used to determine if a particular solution will be able to work as required in the simulated environment of a problem.
3) Calculations are used to find preliminary results of particular situations, their cause and effects based on scientific laws, theories and hypothesis such that the factor of the problem is equated with the available ideas to find the best possible solution.
The expression of V(m³)=e^(t(s)) to make V in in³ and t in minutes is;
V(in³) = (¹/₆₁₀₂₄)a![e^{\frac{1}{60}bt(h)](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B1%7D%7B60%7Dbt%28h%29)
We are given that;
Volume of microbial culture is observed to increase according to the formula;
V = e^(t)
where;
t is in seconds
V is in m³
We want to now express V in in³ and t in minutes.
Now, from conversions;
1 m³ = 61024 in³
Also; 1 second = 1/60 minutes
according to formula for exponential decay, we know that;
V = ae^(bt)
Thus, we have;
61024V = ae^(¹/₆₀b(t(h))
V(in³) = (¹/₆₁₀₂₄)a![e^{\frac{1}{60}bt(h)](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B1%7D%7B60%7Dbt%28h%29)
Read more about subject of formula at; brainly.com/question/790938
Answer:
maneuverability
Explanation:
needless to say, I took the quiz