Answer:
a) Q = 251.758 kJ/mol
b) creep rate is 
Explanation:
we know Arrhenius expression is given as

where
Q is activation energy
C is pre- exponential constant
At 700 degree C creep rate is
% per hr
At 800 degree C creep rate is
% per hr
activation energy for creep is
= 
![\frac{1\%}{5.5 \times 10^{-2}\%} = e^{[\frac{-Q}{R(800+273)}] -[\frac{-Q}{R(800+273)}]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%5C%25%7D%7B5.5%20%5Ctimes%2010%5E%7B-2%7D%5C%25%7D%20%3D%20e%5E%7B%5B%5Cfrac%7B-Q%7D%7BR%28800%2B273%29%7D%5D%20-%5B%5Cfrac%7B-Q%7D%7BR%28800%2B273%29%7D%5D%7D)
![\frac{0.01}{5.5\times 10^{-4}} = ln [e^{\frac{Q}{8.314}[\frac{1}{1073} - \frac{1}{973}]}]](https://tex.z-dn.net/?f=%5Cfrac%7B0.01%7D%7B5.5%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%20ln%20%5Be%5E%7B%5Cfrac%7BQ%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B1073%7D%20-%20%5Cfrac%7B1%7D%7B973%7D%5D%7D%5D)
solving for Q we get
Q = 251.758 kJ/mol
b) creep rate at 500 degree C
we know





I believe it’s c because you don’t want your gas to run real low, so I think it’s best to do it when your fuel.
Answer:
1200KJ
Explanation:
The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.
P (rotor-loss) = 3 x K.E
P = 3 x 300 = 900 KJ
After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;
KE = 300 KJ
Since it is in opposite direction, it will also add up to rotor loss
P ( rotor loss ) = 900 + 300 = 1200 KJ