1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
9

Bridge A is the longest suspension bridge in a Country. Bridge B is 5555 feet shortershorter than Bridge A. If the length of Bri

dge A is m​ feet, express the length of Bridge B as an algebraic expression in m. Write an expression representing the length of Bridge B in terms of m.
Engineering
1 answer:
MatroZZZ [7]3 years ago
4 0

Answer:

the length of the bridge B is L = m - 5555 ft

Explanation:

Denoting the length of the bridge B as L we get

length of bridge B = length of bridge A - 5555 ft

since length of bridge A=m

L = m - 5555 ft

You might be interested in
Please answer fast. With full step by step solution.​
lina2011 [118]

Let <em>f(z)</em> = (4<em>z </em>² + 2<em>z</em>) / (2<em>z </em>² - 3<em>z</em> + 1).

First, carry out the division:

<em>f(z)</em> = 2 + (8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1)

Observe that

2<em>z </em>² - 3<em>z</em> + 1 = (2<em>z</em> - 1) (<em>z</em> - 1)

so you can separate the rational part of <em>f(z)</em> into partial fractions. We have

(8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1) = <em>a</em> / (2<em>z</em> - 1) + <em>b</em> / (<em>z</em> - 1)

8<em>z</em> - 2 = <em>a</em> (<em>z</em> - 1) + <em>b</em> (2<em>z</em> - 1)

8<em>z</em> - 2 = (<em>a</em> + 2<em>b</em>) <em>z</em> - (<em>a</em> + <em>b</em>)

so that <em>a</em> + 2<em>b</em> = 8 and <em>a</em> + <em>b</em> = 2, yielding <em>a</em> = -4 and <em>b</em> = 6.

So we have

<em>f(z)</em> = 2 - 4 / (2<em>z</em> - 1) + 6 / (<em>z</em> - 1)

or

<em>f(z)</em> = 2 - (2/<em>z</em>) (1 / (1 - 1/(2<em>z</em>))) + (6/<em>z</em>) (1 / (1 - 1/<em>z</em>))

Recall that for |<em>z</em>| < 1, we have

\displaystyle\frac1{1-z}=\sum_{n=0}^\infty z^n

Replace <em>z</em> with 1/<em>z</em> to get

\displaystyle\frac1{1-\frac1z}=\sum_{n=0}^\infty z^{-n}

so that by substitution, we can write

\displaystyle f(z) = 2 - \frac2z \sum_{n=0}^\infty (2z)^{-n} + \frac6z \sum_{n=0}^\infty z^{-n}

Now condense <em>f(z)</em> into one series:

\displaystyle f(z) = 2 - \sum_{n=0}^\infty 2^{-n+1} z^{-(n+1)} + 6 \sum_{n=0}^\infty z^{-n-1}

\displaystyle f(z) = 2 - \sum_{n=0}^\infty \left(6+2^{-n+1}\right) z^{-(n+1)}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{-(n-1)+1}\right) z^{-n}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{2-n}\right) z^{-n}

So, the inverse <em>Z</em> transform of <em>f(z)</em> is \boxed{6+2^{2-n}}.

4 0
3 years ago
A prototype boat is 30 meters long and is designed to cruise at 9 m/s. Its drag is to be simulated by a 0.5-meter-long model pul
Ghella [55]

Answer:

a) 1.16 m/s

b)  1/216000

c)  (√15)/6480000

Explanation:

The parameters given are;

Length of boat prototype, lp = 30 m

Speed of boat prototype = 9 m/s

Length of boat model, lm= 0.5 m

a) lm/lp = 0.5/30 = 1/60 = ∝

(vm/vp) = ∝^(1/2) = √∝ = (1/60)^(1/2)

vm = 9 × (1/60)^(1/2) = 1.16 m/s

b) The ratio of the model to prototype drag, Fm/Fp, is given as follows;

Fm/Fp = (vm/vp)²×(lm/lp)² = ∝³

Fm/Fp = (1/60)³ = 1/216000

c) The ratio of the model to prototype power  pm/p_p = (Fm/Fp) × (vm/vp) = ∝³×√∝

The ratio of the model to prototype power  pm/p_p = √(1/60) × (1/60)³

pm/p_p = √(1/60) × (1/60)³ = (√15)/6480000

6 0
3 years ago
It is appropriate to use the following yield or failure criterion for ductile materials (a) Maximum shear stress or Tresca crite
Nataly [62]

Answer:

(b)Distortion energy theory.

Explanation:

The best suitable theory for ductile material:

       (1)Maximum shear stress theory (Guest and Tresca theory)

It theory state that applied maximum shear stress should be less or equal to its maximum shear strength.

      (2)Maximum distortion energy theory(Von Mises henkey's        theory)

It states that maximum shear train energy per unit volume at any point  is equal to strain energy per unit volume under the state of uni axial stress condition.

But from these two Best theories ,suitable theory is distortion energy theory ,because it gives best suitable result for ductile material.

6 0
2 years ago
8. Two 40 ft long wires made of differing materials are supported from the ceiling of a testing laboratory. Wire (1) is made of
san4es73 [151]

Answer:

Material K has a modulus of elasticity E=3.389× 10¹¹ Pa

Material H has a modulus of elasticity E=1.009 × 10⁹ Pa

Material K has higher value of modulus of elasticity than material H

Material K is stiffer.

Explanation:

Wire 1 material H

Length=L = 40 ft =12.192 m

Diameter= 3/8 in = 0.009525 m

Area= A= πr²,where r=0.009525/2 =0.004763

A=3.142*0.004763² =0.00007126 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.10 in = 0.00254

To find modulus of elasticity apply'

E=F*L/A*ΔL

E=1001.25*12.192/(0.004763*0.00254)

E= 1009027923.58 Pa

E=1.009 × 10⁹ Pa

For Wire 2 material K

Length=L= 40 ft =12.192 m

Diameter = 3/16 in = 0.1875 in = 0.004763 m

Area= πr² = 3.142 * (0.004763/2)² = 0.00000567154 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.25 in =0.00635 m

To find modulus of elasticity apply'

E=F*L/A*ΔL

E= (1001.25*12.192)/(0.00000567154 * 0.00635 )

E=338955422575 Pa

E=3.389× 10¹¹ Pa

Material  K has a greater modulus of elasticity

The material with higher value of E is stiffer than that with low value of E.The stiffer material is K.

8 0
3 years ago
Consider a 2-shell-passes and 8-tube-passes shell-and-tube heat exchanger. What is the primary reason for using many tube passes
Maru [420]

Answer:

See explanation

Explanation:

Solution:-

- The shell and tube heat exchanger are designated by the order of tube and shell passes.

- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.

- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.

- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.

- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:

                                U ∝ v^( 0.8 )    .... ( turbulence )

- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.

Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).

5 0
3 years ago
Other questions:
  • Calculate the reactions at 4 ends (supports) of this bookshelf. Assume that the weight of each book is approximately 1 lb. The w
    13·1 answer
  • A 3-m wide rectangular channel has a flow velocity of 1.8 m/s when the depth of flow is 1.2 m. what will be the flow velocity wh
    14·1 answer
  • Give me uses of a grinding machine in agriculture.
    15·1 answer
  • Which word from the passage best explains what the web in the passage symbolizes
    10·1 answer
  • State 3 advantages and 3 disadvantages of unit rate contract​
    10·1 answer
  • Rod of steel, 200 mm length reduces its diameter (50 mm) by turning by 2 mm with feed speed 25 mm/min. You are required to calcu
    11·1 answer
  • QUICK ASAP
    5·1 answer
  • What is the tolerance of number 4?
    12·1 answer
  • If something is 50fficient, how many joules of wasted energy will there be if 750j of energy is put in?’
    12·1 answer
  • Silicon chips are used primarily in ?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!