1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
14

An uncovered swimming pool loses 1.0 inch of water off its 1,000 ft^2 surface each week due to evaporation. The heat of vaporiza

tion for water at the pool temperature is 1050 btu/lb. The cost of energy to heat the pool is $10.00 per million btu. A salesman claims that a S500 pool cover that reduces evaporation losses by two-thirds will pay for itself in one 15-week swimming season. Can it be true?
Engineering
1 answer:
soldi70 [24.7K]3 years ago
3 0

Answer:

The affirmation is true, the cover will be worth buying

Explanation:

The equation necessary to use is

E = m*cv,

Where

cv: the heat of vaporization.  

Finding the rate at which the water evaporates (m^3/week).  

The swimming pool loses water at 1 inch/week off its 1,000 ft^2

Than,

1000 ft² * 1 in/wk * 1 ft/12 in = 83.33 ft³/week

To obtains the rate of mass loss it is necessary to multiply it for the density of water

83.33 ft³/week * 62.4 lb/ft³ = 5200 lb/week

Knowing the vaporization heat it is possible to find the rate of heat which is leaving the swimming pool  

5200 lb/week * 1050 BTU/lb = 5460000 btu/week

Over a 15-week period, the pool loses 81.9 million BTU.  

Knowing the cost of energy to heat the pool is $10.00 per million btu

The price = $819

This way, the affirmation is true, the cover will be worth buying

You might be interested in
In terms of the atomic radius, R, determine the distance between the centers of adjacent atoms for the FCC crystal structure alo
timama [110]

Answer:

The distance between the centers of adjacent atoms for the FCC crystal structure along the [100] is 2R√2

Explanation:

From the image uploaded, a Face centered cubic structure (100) plane, there is one atom at each of the four cube corners, each of which is shared with four adjacent unit cells, while the center atom lies entirely within the unit cell.

In terms of the atomic radius, R, we determine the distance between the centers of adjacent atoms.

Let this distance = AC

the two adjacent sides = AB and BC

AB = a = 2R

BC = a = 2R

Using Pythagoras theorem

AC² = AB² + BC²

AC² = a² + a²

AC² = 2a²

AC = √2a²

AC = a√2

But a = 2R

AC = 2R√2

Therefore,  the distance between the centers of adjacent atoms for the FCC crystal structure along the [100] is 2R√2

6 0
3 years ago
The kinetic energy correction factor depends on the (shape — volume - mass) of the cross section Of the pipe and the (velocity —
butalik [34]

Answer:

The kinetic energy correction factor the depends on the shape of the cross section of the pipe and the velocity distribution.

Explanation:

The kinetic energy correction factor take into account that the velocity distribution over the pipe cross section is not uniform.  In that case, neither the pressure nor the temperature are involving and as we can notice, the velocity distribution depends only on the shape of the cross section.

3 0
3 years ago
A cylindrical specimen of a metal alloy 45.8 mm long and 9.72 mm in diameter is stressed in tension. A true stress of 378 MPa ca
Sliva [168]

Answer:

390.242 MPa

Explanation:

Attached is the full solution.

8 0
2 years ago
A smooth ceramic sphere (SG 5 2.6) is immersed in a fl ow of water at 208C and 25 cm/s. What is the sphere diameter if it is enc
Aleks [24]

Answer:

a. 4\mu m

b. 1 m

Explanation:

According to the question, the data is as follows

The Density of water at 20 degrees celcius is 1000 kg/m^3

Viscosity is 0.001kg/m/.s

Velocity V = 25 cm/s

V = 0.25 m/s

Now

a. The creeping motion is

As we know that

Reynold Number = (Density of water × V × d) ÷ (Viscosity)

1 = (1,000 × 0.25 × d) ÷ 0.0001

d = (1 × 0.001) ÷ (1,000 × 0.25)

= 4E - 06^m

= 4\mu m

b. Now the sphere diameter is

Reynold Number = (Density of water × V × d) ÷ (Viscosity)

250,000 = (1,000 × 0.25 × d) ÷ 0.0001

d = (250,000 × 0.001) ÷ (1,000 × 0.25)

= 1 m

6 0
3 years ago
Compare a series circuit powered by six 1.5-volt batteries to a series circuit powered by a single 9-volt battery. Make sure the
lana [24]

Answer:

Both series circuits provide a total voltage of 9 volts to the two bulbs connected in series and the voltage will be equally divided among two bulbs and they will have same brightness. Therefore, both circuits will have same characteristics.

Explanation:

We are asked to compare two series circuits having equal number of light bulbs.

1st circuit is powered by 6 batteries each having a voltage of 1.5V

2nd circuit is powered by a single battery having a voltage of 9V.

The six batteries in the 1st circuit can be connected together in series or in parallel.

When the batteries are connected in series (positive terminal of one battery connected to negative terminal of another battery) their voltage gets added which means

Voltage of pack = number of batteries*voltage of each battery

Voltage of pack = 6*1.5

Voltage of pack = 9 volts

But the current remains same in the series connection since there is only path for the current to flow.

On the other hand, when the batteries are connected in parallel, the voltage remains same but the current increases.

Circuit 1:

In this circuit, we have 6 batteries each of 1.5 volts connected in series to provide a voltage of 9 volts.

We have connected 2 bulbs in this series circuit.

The voltage will be equally divided between two bulbs if both bulbs are identical in construction.

So there will be 4.5 volts across each bulb and both bulbs will have same brightness.

Circuit 2:

In this circuit, we have 1 battery which provide a voltage of 9 volts.

We have connected 2 bulbs in this series circuit just like in circuit 1.

The voltage will be equally divided between two bulbs if both bulbs are identical in construction.

So there will be 4.5 volts across each bulb and both bulbs will have same brightness.

Conclusion:

Both series circuits provide a total voltage of 9 volts to the two bulbs connected in series and the voltage will be equally divided among two bulbs and they will have same brightness. Therefore, both circuits will have same characteristics.

3 0
3 years ago
Other questions:
  • What is productivity as it relates to labor?
    11·1 answer
  • g A plane stress element has components sigma x = 160 MPa, tau xy = 100 MPa (CW). Determine the two values pf sigma y for which
    13·1 answer
  • What is the main purpose of the alternator?
    13·1 answer
  • What organization which fire codes
    13·2 answers
  • What are three automotive safety systems
    14·1 answer
  • Benzene gas (C6H6) at 25° C and 1 atm, enters a combustion chamber operating at steady state and burns with 95% theoretical air
    6·2 answers
  • The following passage contains a fragment. Select the correct revision. Presley took the exuberance of gospel and added the freq
    7·1 answer
  • Robots make computations and calculations using what part
    12·1 answer
  • Please help me with this. Picture
    5·1 answer
  • There are two methods to create simple robots. First, you can construct them by purchasing various individual components and ass
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!