Answer:
terms- + -
variables- x p
coefficent-7 3
constant- 9
Step-by-step explanation:
(2^8 x 3^-5 x 6^0) x [(3^-2/2^3) x 2^28] = x
(256 x .004 x 1) x [(.111/8) x 268,435,456] = x
(1.024 x 1) x .(0138 x 268,435,456) = x
1.024 x (.0138 x 268,435,456) = x
1.024 x 3,704,409.2928 = x
3,793,315.1158272 = x
Correct me if I am wrong. :)
The answer:
by definition, an exponential function with base c is defined by <span>h (x) = ac^x</span><span>
where a ≠0, c > 0 , b ≠1, and x is any real number.</span>
The base, c, is a constant and the exponent, x<span>, is a variable.
</span>so if we have f(x)=3(3\8)^2x, this equivalent to f(x)=3(3\8)^y(x),
where y (x)=2x, <span>
therefore, the base is 3/8, and the variable is the function </span>y (x)=2x,
Answer: 2343 / 256
Explanation
I will do this for you in two forms: 1) adding each term, and 2) using the general formula for the sum of geometric series.
1) Adding the terms:
4
∑ 3 (3/4)^i = 3 (3/4)^0 + 3 (3/4)^1 + 3 (3/4)^2 + 3 (3/4)^3 + 3 (3/4)^4
i=0
= 3 + 9/4 + 27/16 + 81/64 + 243/256 = [256*3 + 27*16 + 64*9 + 4*81 + 243] / 256 =
= 2343 / 256
2) Using the formula:
n-1
∑ A (r^i) = A [1 - r^(n) ] / [ 1 - r]
i=0
Here n - 1 = 4 => n = 5
r = 3/4
A = 3
Therefore the sum is 3 [ 1 - (3/4)^5 ] / [ 1 - (3/4) ] =
= 3 [ 1 - (3^5) / (4^5) ] / [ 1/4 ] = 3 { [ (4^5) - (3^5) ] / (4^5) } / {1/4} =
= (3 * 781) / (4^5) / (1/4) = 3 * 781 / (4^4) = 2343 / 256
So, no doubt, the answer is 2343 / 256