Answer:
Element Lithium
Explanation:
The element with the highest second ionization energy is lithium. It belongs to the alkaline metal group I.e group one metals
It has the highest second ionization energy because it is very difficult to remove the electron from the 1s orbital.
Its atomic number is 3. The electronic configuration is 1s2 2S1
Answer is: It has a negative charge and is located in orbitals around the nucleus.
The electron (symbol: e⁻) is a subatomic particle whose electric charge is negative one elementary charge.
Electrons are moving in energy levels around nucleus.
The electron has a mass that is approximately 1/1836 that of the proton.
Electrons have properties of both particles and waves.
Explanation:
When two small nuclei combine together to form a large nuclei then it is known as nuclear fusion.
When nuclei of two hydrogen atoms fuse together then it results in the formation of a helium atom along with the release of lot of energy. This energy is nuclear energy.
This nuclear reaction is as follows.

Thus, we can conclude that nuclear fusion represents nuclear energy.
Answer:
a. 3; b. 5; c. 10; d. 12
Explanation:
pH is defined as the negative log of the hydronium concentration:
pH = -log[H₃O⁺] (hydronium concentration)
For problems a. and b., HCl and HNO₃ are strong acids. This means that all of the HCl and HNO₃ would ionize, producing hydronium (H₃O⁺) and the conjugate bases Cl⁻ and NO₃⁻ respectively. Further, since all of the strong acid ionizes, 1 x 10⁻³ M H₃O⁺ would be produced for a., and 1.0 x 10⁻⁵ M H₃O⁺ for b. Plugging in your calculator -log[1 x 10⁻³] and -log[1.0 x 10⁻⁵] would equal 3 and 5, respectively.
For problems c. and d. we are given a strong base rather than acid. In this case, we can calculate the pOH:
pOH = -log[OH⁻] (hydroxide concentration)
Strong bases similarly ionize to completion, producing [OH⁻] in the process; 1 x 10⁻⁴ M OH⁻ will be produced for c., and 1.0 x 10⁻² M OH⁻ produced for d. Taking the negative log of the hydroxide concentrations would yield a pOH of 4 for c. and a pOH of 2 for d.
Finally, to find the pH of c. and d., we can take the pOH and subtract it from 14, giving us 10 for c. and 12 for d.
(Subtracting from 14 is assuming we are at 25°C; 14, the sum of pH and pOH, changes at different temperatures.)