Answer:
Zero-Nine
Explanation:
this is becasue these numbers are rather small and if you plug these numbers into an equation you will most likely get 0.
Answer:
The answer to your question is 432 g of CO₂
Explanation:
Data
CaCO₃ = 983 g
CaO = 551 g
CO₂ = ?
Balanced reaction
CaCO₃ (s) ⇒ CaO (s) + CO₂ (g)
This reaction is balanced, to solve this problem just remember the Lavoisier Law of conservation of mass that states that the mass of the reactants is equal to the mass of the products.
Mass of reactants = Mass of products
Mass of CaCO₃ = Mass of CaO + Mass of CO₂
Solve for CO₂
Mass of CO₂ = Mass of CaCO₃ - Mass of CaO
Mass of CO₂ = 983 g - 551 g
Simplification
Mass of CO₂ = 432 g
Answer:
B
Explanation:
I don't know how to explain this but you get it
Answer: 51 grams
Explanation:
Ammonia is a gas with a chemical formula of NH3.
Given that,
Amount of moles of NH3 (n) = ?
Volume of NH3 (v) = 200mL
since the standard unit of volume is liters, convert 200mL to liters
(If 1000mL = 1L
200mL = 200/1000 = 0.2L)
Concentration of NH3 (c) = 1.5M
Since concentration (c) is obtained by dividing the amount of solute dissolved by the volume of solvent, hence
c = n / v
Make n the subject formula
n = c x v
n = 1.50M x 0.2L
n = 3 moles
Now, calculate the mass of ammonia
Amount of moles of NH3 (n) = 3
Mass of NH3 in grams = ?
For molar mass of NH3, use the atomic masses:
N = 14g; H = 1g
NH3 = 14g + (1g x 3)
= 14g + 3g
= 17g/mol
Since, n = mass in grams / molar mass
3 moles = m / 17g/mol
m = 3 moles x 17g/mol
m = 51 grams
Thus, 51 grams of ammonia was dissolved in the solution.
B because it can stabilize