Answer: up to 4 other atoms.
Explanation:
- <em>Hybridization sp</em>³ means that the atom has 4 equal orbitals formed by the combination of 1 s and 3 p orbitals.
- Each of these sp³ orbitals is a place for a chemical bonding.
- Hence, since each orbital is able to bind a different atom, you conclude that <em>a central atom that is sp³ hydridized could bind up to 4 other atoms.</em>
This is precisely the case for carbon (C) atoms.
Carbon has atomic number 6. So its electron configuration is 1s² 2s²p².
The four electrons in the level 2, those shown in 2s² 2p², are in two different orbitals: two are in the orbital 2s and two are in the orbitals 2p.
This diagram shows how those 4 electrons fill the orbitals
The two 2s electrons have lower energy level than the 2px and 2 py electrons, but the difference is not too big.That is why one of the electrons in the 2s ortital can be promoted to the empty 2pz orbital, and you get 4 equal hydridized ortibals, so called sp³.
And that is why, carbon (C) ends up with 4 equal (hydridized) orbitals which can bind up to 4 different atoms, including other carbon atoms, and so, form long chains and, virtually, infinite compounds.
A lot of cesium is how much cesium you would get and stuff
The rate of growth is faster in the (10 - 14) age group and slows down after the age of 14. After the age of 16 the growth is the slowest
Answer:
I did not understand
i donot know it is correct
(i think 2 one is the best)
Explanation:
When the balanced reaction equation is:
P4O10 + 6H2O→ 4 H3PO4
when we have the mass of P4O10 = 10 g and the molar mass of P4O10=284 g/mol & we have the molar mass of H3PO4 =98 g/mol so we can get the mass of H3PO4 by substitution by:
mass of H3PO4 = (mass of P4O10)/(molar mass of P4O10) * 4(mol of H3PO4)*molar mass of H3PO4
∴mass of H3PO4 = (10 / 284) * 4 * 98 = 13.8 g