We calculate it as follows:
Moles CO2 = 0.01849 g / 44 = 0.000420
<span>Mass C = 0.000420 x 12 = 0.00504 g </span>
<span>Moles H = 2 x 0.006232 / 18 = 0.000692 </span>
<span>Mass H = 0.000692 g </span>
<span>Mass O = 0.005982 - ( 0.00504 + 0.000692) = 0.00025 </span>
<span>Moles O = 0.00025 / 16 = 0.0000156 </span>
<span>C 0.000420
H 0.000692
O 0.0000156
</span>
<span>divide each by the smallest value, giving you the chemical formula as:
</span><span>
C27H44O</span>
6 Na + 1 Fe₂O₃ → 3 Na₂O + 6 Fe
<h3>Explanation</h3>
Method One: Refer to electron transfers.
Oxidation states:
- Na: from 0 to +1; loses one electron.
- Fe: from +3 to 0; gains three electrons.
Each mole of Fe₂O₃ contains two Fe atoms and will gain 2 × 3 = 6 electrons during the reaction. It takes 6 moles of Na to supply all those electrons.
6 Na + 1 Fe₂O₃ → ? Na₂O + ? Fe
- There are two moles of Na atoms in each mole of Na₂O. 6 moles of Na will make 3 moles of Na₂O.
- There are two moles of Fe atoms in each mole of Fe₂O₃. 1 mole of Fe₂O₃ will make 2 moles of Fe.
6 Na + 1 Fe₂O₃ → 3 Na₂O + 2 Fe
Method Two: Atoms conserve.
Fe₂O₃ has the largest number of atoms among one mole of all four species in this reaction. Assume <em>one</em> as its coefficient.
? Na + <em>1</em> Fe₂O₃ → ? Na₂O + ? Fe
There are two moles of Fe atoms and three moles of O atoms in each mol of Fe₂O₃. One mole of Fe₂O₃ contains two moles of Fe and three moles of O. There are one mole of O atom in every mole of Na₂O. Three moles of O will go to three moles of Na₂O.
? Na + <em>1</em> Fe₂O₃ → <em>3</em> Na₂O + <em>2</em> Fe
Each mole of Na₂O contains two moles of Na. Three moles of Na₂O will contain six moles of Na.
<em>6</em> Na + <em>1</em> Fe₂O₃ → <em>3</em> Na₂O + <em>2</em> Fe
Simplify the coefficients. All coefficients in this equation are now full number and relatively prime. Hence the equation is balanced.
6 Na + 1 Fe₂O₃ → 3 Na₂O + 2 Fe
<span>In biochemistry and metabolism, beta-oxidation is the catabolic process by which fatty acid molecules are broken down in the mitochondria to generate acetyl-CoA, which enters the citric acid cycle, and NADH and FADH2,</span>
Answer:
223.08 K
Explanation:
First we <u>convert 173.0 °C to K</u>:
- 173.0 °C + 273.16 = 446.16 K
With the absolute temperature we can use <em>Charles' law</em> to solve this problem:
Where in this case:
We <u>input the data</u>:
- 446.16 K * 50 L = T₂ * 100 L
And <u>solve for T₂</u>: