Answer:
260.34g
Explanation:
First, you need to know what angelic acid is comprised of. It is written as C₅H₈O₂.
In order to solve for the mass of 2.6 moles of angelic acid, you need the mass of 1 mole of angelic acid. This can be found by adding the masses from the periodic table, like shown below:
5 carbon atoms = (5)(12.01g) = 60.05g
8 hydrogen atoms = (8)(1.01) = 8.08g
2 oxygen atoms = (2)(16) = 32g
angelic acid = 60.05 + 8.08 + 32 = 100.13g
Then, set up a basic stoichiometric equation and solve. The units should cancel out.

Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108
Answer:
D. Solutions are formed when the water’s polar molecules separate the polar molecules of an ionic or molecular compound.
Explanation:
Solutions are homogeneous mixtures formed by interaction between solutes and solvents.
Water based solutions have water as the solvents and mostly ionic and molecular compounds as their solutes.
Water is a polar solvent that is capable of dissolving many compounds by hydrating them. The molecules of water surrounds the solute and forces them to separate.
This is a redox reaction, meaning reduction-oxidation reaction. This represents the reaction in one side of the electrode in an electrolysis set-up. First, we find the oxidation number of Cu in CuSO4:
(ox. # of Cu)+ ox.# of S + 4(ox.# of oxygen) = 0
(ox. # of Cu) + (6) + 4(-2) = 0
ox. # of Cu = 2+
CuSO4 ---> Cu + SO42-
Cu2+ + SO42- ----> Cu + SO42-
Cu2+ -----> Cu + 2e- (net ionic reaction)
The stoichiometric equation would be 2 electrons per mole Copper. Copper has a molar mass of <span>63.5 g/mol. Then, it would only need 2 electrons.
</span>