Answer:
The initial E° for the second cell is the same as for the first cell.
Explanation:
Because the overall chemical reaction that occurs in the cell does not change.
Answer:
1) Ammonium hydroxide is neutralized by sulfuric acid to produce ammonium sulfate and water. It will make 0.157 mol ammonium sulfate when you neutralize 11.00 g ammonium hydroxide.
2) 2NH₄OH + H₂SO₄ → (NH₄)₂SO₄ + 2H₂O.
Explanation:
- Firstly, we should balance the equation of heptane combustion.
- We can balance the equation by applying the conservation of mass to the equation.
- The balanced equation is: <em>2NH₄OH + H₂SO₄ → (NH₄)₂SO₄ + 2H₂O.</em>
- This means that every 2.0 moles of ammonium hydroxide (NH₄OH) will produce 1.0 mole of ammonium sulfate (NH₄)₂SO₄ when it is neutralized by sulfuric acid.
- We need to calculate the no. of moles in 11.0 g of ammonium hydroxide that is neutralized using the relation: <em>n = mass/molar mass.
</em>
n of 11.0 g of ammonium hydroxide (NH₄OH) = mass/molar mass = (11.0 g)/(35.04 g/mol) = 0.314 mol.
<u><em>Using cross multiplication:
</em></u>
2.0 moles of NH₄OH make → 1.0 mole of (NH₄)₂SO₄.
0.314 mol of NH₄OH make → ??? moles of (NH₄)₂SO₄.
∴ The no. of moles of (NH₄)₂SO₄ that will be made from neutralizing (11.0 g) of NH₄OH = (0.314 mol)(1.0 mol)/(2.0 mol) = 0.157 mol.
<em>∴ Ammonium hydroxide is neutralized by sulfuric acid to produce ammonium sulfate and water. It will make </em><em>0.157</em><em> mol ammonium sulfate when you neutralize 11.00 g ammonium hydroxide.</em>
Answer:
- final temperature (T2) = 748.66 K
- ΔU = w = 5620.26 J
- ΔH = 9367.047 J
- q = 0
Explanation:
ideal gas:
reversible adiabatic compression:
∴ q = 0
∴ w = - PδV
⇒ δU = δw
⇒ CvδT = - PδV
ideal gas:
⇒ PδV + VδP = RδT
⇒ PδV = RδT - VδP = - CvδT
⇒ RδT - RTn/PδP = - CvδT
⇒ (R + Cv,m)∫δT/T = R∫δP/P
⇒ [(R + Cv,m)/R] Ln (T2/T1) = Ln (P2/P1) = Ln (1 E6/1 E5) = 2.303
∴ (R + Cv,m)/R = (R + (3/2)R)/R = 5/2R/R = 2.5
⇒ Ln(T2/T1) = 2.303 / 2.5 = 0.9212
⇒ T2/T1 = 2.512
∴ T1 = 298 K
⇒ T2 = (298 K)×(2.512)
⇒ T2 = 748.66 K
⇒ ΔU = Cv,mΔT
⇒ ΔU = (3/2)R(748.66 - 298)
∴ R = 8.314 J/K.mol
⇒ ΔU = 5620.26 J
⇒ w = 5620.26 J
⇒ ΔH = ΔU + nRΔT
⇒ ΔH = 5620.26 J + (1 mol)(8.314 J/K.mol)(450.66 K)
⇒ ΔH = 5620.26 J + 3746.787 J
⇒ ΔH = 9367.047 J
Isotopes are variants atoms of the same element, having same number of atomic(proton) number but different number of neutrons and mass number.
Considering iron-60
- The atomic number which also equals the number of protons for the element iron as can be seen on the periodic table is 26
- The name iron-60 also tells us that this particlar isotope's mass number is 60.
- The chemical symbol for Iron is Fe
Now expressing as an isotope iron-60 becomes ⁶⁰₂₆Fe ( very unstable )
Other stable isotopes of Iron include ⁵⁴₂₆Fe , ⁵⁶₂₆Fe, ⁵⁷₂₆Fe and ⁵⁸₂₆Fe
See more here: brainly.com/question/11236150
Answer:
14) The edge dislocation is more plastic than the screw dislocation
15) So as to form kinks that are fast moving
Explanation:
14) Edge and screw dislocations are the two main types of mobile dislocations
The three dimensional core of the screw dislocation prevents the slipping of the layers (one over the other) in a BCC metal such that kinks are required to be formed first by thermal activation (heating) in order. The kinks are edge dislocation that move such that the screw dislocation moves forward
Hence, the edge dislocation is more plastic than the screw dislocation
15) The three dimensional structure of a screw dislocation acts like a wedge which resists the slipping of the layers in the BCC structure such that the screw dislocation needs to be highly thermally activated forming kinks before the surrounding layers can move.